IERGS5050 Al Foundation Models, Systems and Applications
Spring 2025

Part Il; Efficient Transformer Architectures

Prof. Wing C. Lau
wclau@ie.cuhk.edu.hk
http://www.ie.cuhk.edu.hk/wclau

mailto:wclau@ie.cuhk.edu.hk
http://www.ie.cuhk.edu.hk/wclau

Acknowledgements

Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.

Stanford CS336: Language Modeling from Scratch, Spring 2024
O by Profs. Tatsunori Hashimoto, Percy Liang, https://stanford-cs336.github.io/spring2024/
Stanford CS229S: Systems for Machine Learning, Fall 2023
by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/
CMU 11-667: Large Language Models: Methods and Applications, Fall 2024
by Profs. Chenyan Xiong and Daphne Ippolito, https://cmu-llms.org
CMU 11-711: Advanced Natural Language Processing (ANLP), Spring 2024
by Prof. Graham Neubig, https://phontron.com/class/anlp2024/lectures/
UPenn CIS7000: Large Language Models, Fall 2024
by Prof. Mayur Naik, https://llm-class.github.io/schedule.html
UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024
by Prof. Wenhu Chen, https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
MIT 6.5940: TinyML and Efficient Deep Learning Computing, Fall 2024
by Prof. Song Han, https://hanlab.mit.edu/courses/2024-fall-65940
UMD CMSC848K: Multimodal Foundation Models, Fall 2024
by Prof. Jia-Bin Huang, https://jbhuang0604.github.io/teaching/CMSC848K/
NeurIPS 2024 Invited Talk: “Systems for Foundation Models, and Foundation Models for Systems,”
by Prof. Chris Re, Stanford.
CUHK-SZ CSC6203: Large Language Models, Fall 2024

by Prof. Benyou Wang, https://llm-course.github.io; https://github.com/FreedomIntelligence/CSC6203-LLM

https://stanford-cs336.github.io/spring2024/
https://cs229s.stanford.edu/fall2023/
https://cmu-llms.org/
https://phontron.com/class/anlp2024/lectures/
https://llm-class.github.io/schedule.html
https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
https://jbhuang0604.github.io/teaching/CMSC848K/
https://llm-course.github.io/
https://github.com/FreedomIntelligence/CSC6203-LLM

Case studies on some Recent
Transformers

BERT: Bidirectional Encoder Representations from Transformers

Introduced by Google in 2018, it learned
embeddings of text for use in downstream
tasks. It's major changes are:

e Segment embeddings in addition
to token embeddings and position
embeddings. All are learned!

e Encoder-only instead of encoder-
decoder
Bidirectional instead of unidirectional

e Two simultaneous loss functions
with masked language modeling and
next sentence prediction

BERT (Ours)

OpenAl GPT

Lasl:Layer's[IAIl[II]III][II]III][I

Hidden States oDloD oo oo lad]

BERT = Transformer Encoder

|
rote IR

okens (i) (oa J(- J(oo Yoo J{ oo Joomr](omer] (o e Jirwe et Yo) (-)]

Contextual Word

9l Tl 118 o

BERT: Masked Language Modeling

First, sample 15% of tokens in a
sample. L°‘-;‘“

FFN

Replace token with: %

e [MASK]~ 80%
e Random word token ~ 10%

BERT = Transformer Encoder

e Notreplaced ~10% Input IDs | 101 [slo][zls 119][101881[235,] [T T T T][T]
Pass sentence through the encoder and Masked Tokens [iets1][sice [s |[i |[onex [wsor founs[om0][JEDET -
try to predict [MASK] with a simple Tokens (te=1)(wtee | = | |7][o [wsica [o0 [e | st oot 521

linear layer + softmax!

BERT: Next Sentence Prediction

Logits

Try to determine if one sentence follows Fo
another with simple binary classification. #
All embedding are learned! (unlike original [BERT = Transformer Encoder

]
Transformer). nput 1Ds ﬁé}é}

. Tokens 151t Jotows| e st e see] oo e [t [roe e [iser]
Later works found this to not be useful ... : . >

Input | [CLS] | alice |follows| the | white | rabbit | [SEP] | follow | the | white | rabbit | neo | [SEP]

Token Embeddings E[CLS] Eice |Erotows| Eme | Eunite | Erabbit E[SEP] Eoiow | Etne | Eunite | Evabbit | Eneo E[SEP]

+ + + + + + + + + + + + +
Position Embeddings | E; | E; E, E, E., | Es | E E, E, | E, | E, | Ep
+ + + + + + + + + +

E2
+
EA

m
m
m
m
m
m
m
mITI
twl'l'l
l_nl'l'l

+ +
Segment Embeddings | E, | E,

Vision Transformer (ViT)

e Applies vanilla transformer encoder to image classification

e Convert images to “sequences”:

o Images are spliced into smaller regions
o Regions are flattened and treated as a sequence

Yision Transformer (ViT) Transformer Encoder

Embedded

0 10 20 30 40 50 60 70
Patches

MACs (x10°)
(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

i
I .
I L o Accuracy vs. MACs vs. Model size
MLP .
Hend ! @n2Tvit
—|—a I MLP 82 ' ViT
I = ®
' 2o
Transformer Encoder >
| [ResNet
o
! 0 S 80
v
Patch + Position ‘ . g . Multi-Head é() .
Embedding ! Attention — 79 -
* Extra learnable I a
[class] embedding Lmear Prolecnon of Flattened Patches e
1
== | e I
15 !
ﬂﬂl—».lmﬁﬁﬁﬂ | 20 50M_200M
I 77
. : .

The Llama Family of Transformers from Meta

“Open-source™* Autoregressive LLM first

released by Meta in Feb 2023. (Multiple t)
generations since then.) TRANSFORMERS protaites LLAMA
ARCHITECTURE ARCHITECTURE

Changes include:

.
e Decoder-only instead of encoder-decoder e
e RMSNorm instead of LayerNorm IA": |
e SwiGLU activation instead of GeLU =
e Use Grouped Query Attention (GQA) =
e Rotary positional embeddings instead of iy e
absolute positional embeddings Bl e o
_ : —y

** Here, “open source” means

(1) open-source inference codes + (2) open-weights BUT not open-datasets NOR open data-cleansing/
tuning procedural details or scripts NOR codes for training the model.

Contrast this with the “Open EVERTHING” philosophy of the OMLo family from Ai2 https://allenai.org/olmo

RMS Normalization in Llama

In LayerNorm, we re-center (subtracting from mean) and re-scale (divide by standard deviation)
across (sequence length, embedding _dim) dimensions.

Zhang et al. propose that only re-scaling matters. This saves a small amount of compute
by not needed to re-center.

LayerNorm

Linear Layer

_ a; — |

9i,

yi = f (@ + b;)

RMSNorm

a;

- RMSi(a)

9i,

where RMS(a) =

n

Y e

1=1

2

1

Swish-Gated Linear Unit (SwiGLU)

GELU, ReLU, and Swish Activation Functions

Swish(x) = sigmoid(p*x), B is hyperparam

54— GELU
GLU(x) = x*sigmoid(Wx+b); W,b is learned o
+ —— Swish (beta=0.5
SWIGLU(x) = x * sigmoid(B * x) + ’ e
(1 - sigmoid(B * x)) * (Wx + b) .
Smoother than ReLU, non-monotonic,)
L
0

N\

Grouped Query Attention (GQA)

Multi-Head Attention Multi-Query Attention Grouped Query Attention
MHA MQA GQA

High quality Loss in quality A good compromise
Computationally slow Computationally fast between quality and speed
Attention is All You Need (2017) Fast Transformer Decoder: GQA: Training Generalized
One Write-Head Multi-Query Transformers from
is All You Need (2019) Multi-Head Checkpoints (2023)

GQA interpolates between MHA and MQA. It reduces Memory Bandwidth overhead during inference time while
avoiding excessive loss in accuracy as fewer K and V matrices are loaded into the Decoder (KV-cache in GPU RAM)

“Growing Pains” of Transformers

What would we like to fix about the Transformer?

The Demand of Getting Bigger Models, with Longer Context Length to provide more
capabilities and better accuracies (Emergent Behaviors, Scaling Laws of LLM) without
getting slower (especially when serving the models in real-time):

o But bigger, and longer-context models demand more Compute and Memory

Quadratic compute in self-attention:

o Computing all pairs of interactions means our computation grows quadratically with the
sequence length!

o For recurrent models, it only grew linearly!

o Large Memory and GPU Memory Bandwidth (I/O) Requirements for large K, Q, V matrices,
especially during inference times 1

Need More Robust Position representations:
o Absolute Positional Encoding vs. Relative Positional Encoding

o How to generalize to Context-length change ? [During Training != during Inference]

Efficient Transformers

Charformer
(Tay etal, 2021)

i TokenLearner
Perceiver
(Jaegle et al, 2021) (Ryoo et al,, 2021)

Transformer-XL Nystromformer
(Dai et al., 2019) (Xiong et al., 2019)
Memo M
Recurrence ry{ ComepTeos)r:ed
_ Downsampling “00%ns
Compressive
Transformer/ get Transformer
(Rae et al,, 2018) (Lee etal, 2019)

Clusterformer

4 Rouftlng (Wang et al,, 2020)
) ransformer
Funnel Poolingformer (Royetal, 2020) Reformer

‘ Transformer =~ (Zhanaetal.2021) (Kitaev et al, 2020)
(ChoFr;ilrlfu(:ireTle Iz'ozo) (BrCiZi) N
ETC Big Bird :
(Zaheer et al, 2020) D

Ainslie et al., 2020)

Low-Rank Transformer .
(Winata et al., 2020) Longformer Swin .
(8eitagy etal, 2020) Transformer Clustered Attention
(Liu et al., 2020) (Vyas et al,, 2020)

Low Rank / [\ ong short

(Tay et al., 2020b)

Linformer 5 ¥
(Wang etal, 2020b) Kernels Trzahns:o;ur;er Fixed/Factorized/
2l Adaptive
S Random Patterns Sparse
Random Feature Attention AR Transformer
{Rervl sLs2020) (vetal- 2209/ 8| o ckwise Transformer (H,Sﬁ',t,‘_if,,a, Mﬁﬁﬂi{ﬂm, (Correia et al, 2019)

(Qiuetal, 2019)

Sparse clam

Linear
Transformer Sparse Transformer (Duetal, 2021)
(Katharopoulos et al, 2020) Image Transformer W) Switch
{Parmar et al, 2018) T afanner Product Key
(Fedus et al, 2021) Memory

Axial Transformer
(Hoetal, 2019)

(Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)

(Tay et al., 2020): Efficient Transformers: A Survey 15

Efficient Architecture Designs for LLMs

—{ Sharing-based Attention]—[MQA (Shazeer, 2019), GQA (Ainslie et al., 20‘23)]

Sumformer (Alberti et al., 2023), FluRKA (Gupta et sl., 2023), Scatterbrain (Chen et al., 2021a),
—{ Kernelization or Low-Rank]— LRT (Winata et al., 2020), Performer (Choromanski et al., 2021), RFA (Peng et al., 2021),
Linear Transformer (Katharopoulos et al., 2020), Linformer (Wang et sal., 2020)

[Eficient] Pagliardini et al. (2023), Big Bird (Zaheer et al., 2020), Poolingformer (Zhang et al., 2021),
—[Fixed Pattern Strategles }— Longformer (Beltagy et al., 2020), Blockwise Transformer (Qiu et al., 2020), Sparse Transformer (Child et al., 2019),
Lightning Attention-2 (Qin et al., 2024)

{ ble Pa Strategles]{Hypermtemlon (Han et al., 2024), Reformer (Kitaev et al., 2020), Sparse Sinkhorn Attention (Tay et al., 2020),]

Clustered Attention (Vyas et al., 2020), ClusterFormer (Wang et al., 2022b), Routing Transformer (Roy et al., 2021)

{ Hardware-Assisted Attention]—[FlnshAcwncion (Dao et al,, 2022), vAttention (Prabhu et al., 2024)]

(GShard (Lepikhin et al., 2021), Switch Transformer (Fedus et al., 2022), Artetxe et al. (2022),
o MoE-based LLMs : . ; 3
BASE Layer (Lewis et al., 2021), PanGu-}_ (Ren et al., 2023b), Mixtral 8x7B (Jiang et al., 2023a)
_{ 2 T MSEO Expert Choice (Zhou et al., 2022), StableMoE (Dai et sl., 2022), X-MoE (Chi et al., 2022),
_{ Mixture of Experts (MoE)]' = |l ifelong-MoE (Chen et al., 2023f), Flan-MoE (Shen et al., 2024)

FastMoE (He et al., 2021), FasterMoE (He et al., 2022a), DeepSpeed-MoE (Rajbhandari et al., 2022),
—[" ystem-Level MoE Op 'TA-MoE (Chen et al., 2022a), EdgeMoE (Yi et al., 2023), Tutel (Hwang et al., 2023),
SmartMoE (Zhai et s 23), MegaBlocks (Gale et al., 2023)

1 ALiBi (Press et al,, 2022), xPOS (Sun et al., 2023c), CLEX (Chen et al., 2024a),
—{ Positional Extrapolation and Interpolation RoPE-PI (Chen et al., 2023d), NTK Interpolation (bloc97, 2023),
YaRN Interpolation (Peng et al., 2024), FIRE (Li et al., 2024a), PoSE (Zhu et al., 2024)

'Transformer-XL (Dai et al., 2019), Memformer (Wu et al., 2022a), oc-former (Martins et al., 2022),

Recurrent Struct
-[— RMT (Bulatov et al., 2022), Block-Recurrent Transformer (Hutchins et al., 2022), Retentive Network (Sun et al., 2023b)

[Eﬂiclent Architecture Desngn]

_{ e } Mistral (Jiang et al., 2023a), StreamingLLM (Xiso et al., 2024), PCW (Ratner et al., 2023),

-[Segmentation and Sliding Window LongNet (Ding et al., 2023a), SLED (Ivgi et al., 2023), MemWalker (Chen et al., 2023c),
RAPTOR (Sarthi et al., 2024)

Memorizing Transformer (Wu et al., 2022c), Landmark Attention (Mohtashami & Jaggi, 2023),
—[Memory-Retrieval A LongMem (Wang et al., 2023¢), Unlimiformer (Bertsch et al., 2023),
Focused Transformer (Tworkowski et al., 2023), Xu et al. (2024a)

Structured State Space (Gu et al., 2022a), Diagonal State Space (Gupta et al., 2022), H3 (Fu et al., 2023a),
State Space Models Gated State Space (Mehta et al,, 2023), Block-State Transformer (Pilault et al,, 2023),
Mamba (Gu & Dao, 2023), SMA (Ren et al., 2023a)

—[Transformer-Alternative Architecture

Other Sequential Models]—[wav (Peng et al., 2023b), Hyena (Poli et al., 2023), MEGABYTE (YU et al., 2023)] 16

Source: Zhongwei Wan et al., May 2024): Efficient Large Language Models: A Survey, Trans. On MLR.

Positional Encoding

Slides from video of
Jia-Bin Huang
University of Maryland College Park

https://www.youtube.com/watch?v=SMBkImDWOyQ

The Llama Family of Transformers from Meta

“Open-sourced”™* Autoregressive LLM first

released by Meta in Feb 2023. (Multiple t)
generations since then.) TRAVSFORMERS posepies LLAMA
ARCHITECTURE ARCHITECTURE

Changes include:

V.
e Decoder-only instead of encoder-decoder e
e RMSNorm instead of LayerNorm IM;I
e SwiGLU activation instead of GeLU =
e Use Grouped Query Attention (GQA) =
e Rotary positional embeddings instead of iy ppe

absolute positional embeddings | ZE =]

L : .

** Here, “open sourced” means

(1) open-source inference codes + (2) open-weights BUT not open-datasets NOR open data-cleansing/
tuning procedural details or scripts NOR codes for training the model.

Contrast this with the “Open EVERTHING” philosophy of the OMLo family from Ai2 https://allenai.org/olmo

Variants of Positional encodings to tackle Context-length Generalization

® k) - Absolute Positional Encoding schemes:
Position k 1 2)2%01()) e.g. Sinusoidal positional encoding, Learned (in BERT)
0
sin(w; k) But cannot generalize to sequence of unseen context-
Angular frequency . . = .
cos(wy k) length: Training length != Inferencing length
w; = N~2i/d d :
sin (Wd k) Relative positional encoding: e.g. T5 bias, and many
-1
more...
N = 100,000 | |cos (Wd 1k)
B 5 i
Positional Il P P P P P
embedding ' 1 2 3 4 5
Embedded |
Tokens f X1 X2 X3 Xy X5

Tokens I bought an apple watch

Embedded
Tokens

Tokens

Position

Length L

Dimension d

#Parameters d XL

P,1?

frar |

W12
W13
W14

W1d-1

F W11 7 - Wa1 7

L Wi,q [Wy 4 |

Wi 2
Wy 3
W74

W2 d-1

- Wsq 1
Ws 2
Ws 3
W5 4

W5 d-1
L W54 |

Position 1 2 3 4 5 6
I walk my dog every day

Position 1 2 3 4 5 6
I walk my dog every day

Position 1 2 3 4 5 6
every day | walk my dog

Position ‘ \

I walk my dog every day

Position | \
| | |

every day | walk my dog

Challenge for Positional Encoding Schemes

* How to generalize the model when
Context-length during Training << (unseen) Context-length during Inference

while enabling high inference speed !

* Many different schemes proposed, still active research:
* ALiBi, KERPLE, RoPE, LongRoPE, NoPE, CoPE, YaRN, FIRE, etc..

Rotary Position Embedding (RoPE)

So far, we have seen two kinds of position embeddings:

e Absolute Positional Encoding: e.g. Sinusoidal [Vaswani et al. 2017] and learned (BERT) ;
e Relative Positional Encoding: e.g. T5-bias,

BUT they require “Known” target context length !
Instead of adding extra numbers, RoPE rotates embeddings based on their position so that the relative position of tokens

can be considered in the attention calculations rather than their absolute positions. The angles between embedding
vectors maintain the same proportional relationship as the distance between tokens in the sequence.

I m _ [cos(mB) —sin(m8)
fa(xm,m) = RG Wixp Re _[sin(me) cos(m8)
Query vector at
position m

X3
fi(xn,n) = Rg Wix,

key vector at
position n

X1

< fq (xmr m); fk (xnt n) >

. (11) (12) (1)
_ [cosmf —sinmb Wiy Wik Trn
.k} {q:k}

am,n

dog

>
X1

Rotary Positional Embeddings, 2021

my dog
dog

>
X1

Rotary Positional Embeddings, 2021

| walk my dog

my dog

Rotary Positional Embeddings, 2021

| walk my dog

my dog

Rotary Positional Embeddings, 2021

| walk my dog

>
X1

Rotary Positional Embeddings, 2021

X2
Every day | walk Jw dog
Every day |

>
X1

Rotary Positional Embeddings, 2021

Rotary Positional Embeddings

Query vector at
position m

Rg kan

key vector at
position n

fie(Xn, M)

< fq(Xmm), fr(xXn,n) >

Rotary Positional Embeddings

 m m cos(mf@) —sin(mo)
JaXmm) = Rg Wqxm ke = [sin(m@) cos(m@)
Query vector at
position m
Xo4
fu(xn,n) = Rg Wix,
key vector at
position n 0
—y >
X
Amn = < fq(xm; m), fx(xXp,n) > 1

Rotary Positional Embeddings

m [cos(m@) — sin(m@)
® 7 |sin(m0) cos(m8)

INEEEEEE

N
Q

=
3

Rotary Positional Embeddings

m [cos(m@)
® 7 |sin(m0)
Xo4

g

— sin(m@)
cos(m@)

‘cos(mb,)
| sin(mé,)

‘cos(mb,)

| sin(mé,)

‘cos(mbs)
| sin(m65)

‘cos(mb,)

|sin(m@,)

Rotary Positional Embeddings

m [cos(m@)
® 7 |sin(m0)
Xo4

g

— sin(m@)

cos(m@)

IEEEEEEE

fq(Xm,m)

‘cos(mb,)
| sin(mé,)

‘cos(mb,)

| sin(mé,)

‘cos(mbs)
| sin(m65)

‘cos(mb,)

|sin(m@,)

Rotary Positional Embeddings

IEEEEEE

[]

fq(Xm,m)

Rotary Positional Embeddings

cosmf; —sinmb, 0 0 0 0

sinmf; cosmb; 0 0 0 0

. 0 0 cosmfly —sinmfy - -- 0 0

B 0 0 sinmfy cosmfy - -- 0 0
0 0 0 0 --- cosmf; —sinmb;
0 0 0 0 .-+ sinmf; cosmb,;

R m
C)

[T

fq(Xm,m)

BEEEBEBRER
o1 N w N [y

N
Q

=
3

Rotary Positional Embeddings

Hi — N—Zi/d
N = 10,000

[T
|

fq(Xm,m)

rcos(mo,)]

|cos(m@,)]

cos(mf,)
cos(mé,)
cos(m@,)
cos(mébs)
cos(mébs)
Cos(m94)‘

Fast changing

\

AN

(431 o w N =

sin(mé6,)
sin(mé,)
sin(mé,)
sin(més;)
sin(més;)
sin(mé,)

~ L 7

Slowly changing

|sin(mé,).

sin(mé;)]

| |
EHHHEE ==

relative upper bound

20

18
16
14
12

10

1 1 1 1 1 1 1 L 1

|
50 100

Il 1 1 1

[T SRS | relative distance
150 200 250

rFErfrrlfitga g rrrryrro gJroecllrer e T

| walk my dog every day, enjoying the fresh air and the peaceful surroundings. As we stroll through the neighborhood, my dog
excitedly sniffs every tree and patch of grass, wagging its tail with delight. The routine has become a relaxing part of my day, offering a
moment to clear my mind while my dog gets some exercise. Whether it's sunny or overcast, these walks are a cherished time for both
of us to unwind and explore.

Absolute Positional Embeddings

Amn = [W,(xp + PE(m)) | Wi(xn + PE())

Rotary Positional Embeddings

-
Umn = [RgLqum] Rngxn

X W, (RS RBYW,ex,,

LM Loss

3.0 A

2

2:0'~

1.9

- PerFormer w/. ROPE
~ PerFormer w/o. RoPE

20

T

40 60 80 100
Train Steps (K)

PaLM2

Google’'s Next-Generation
Large Language Model

Perplexity (<)

Poor length generalization!

Extrapolation for

Extrapolation for
Models Trained on 1024 Tokens

55 Models Tramed/on SIIZ Tokens 55
F 4 b s Sinusoidal
A L Rotary
45- 4
o Sinusoidal LA T TS Bias
’ /, A [P ROtElI'y b ‘‘‘‘‘ ALiB1
33 Y of - T5 Bias 2 35 y sl
A ALiBi = ! S
20 4 & 251 ¥ s
é'"‘: ********************** 2 L::tr:_-: 7777777777777777777777777 =
1572 ' ' : : 15— ' - ; .
5124000 8000 12000 16000 1024 4000 8000 12000 16000

Inference Input Tokens Inference Input Tokens

RoPE

1.0

0.5

0.0

Prettrained range

Normal

2048

seen glange

Extrapolation 4096

Position Interpolation, June 2023

Model Evaluation Context Window Size

Size Context Window Method 2048 4096 8192 16384 32768
7B 2048 None 720 >10% >103 >10®% >103
7B 8192 FT 721 7.34 7.69 - -
7B 8192 PI 7.13 6.96 6.95 - -
7B 16384 PI 7.11 6.93 6.82 6.83 -
7B 32768 PI 7.23 7.04 6.91 6.80 6.77
13B 2048 None 6.59 - - - -
13B 8192 FT 6.56 6.57 6.69 - -
13B 8192 PI 6.55 6.42 6.42 - -
13B 16384 PI 6.56 6.42 6.31 6.32 -
13B 32768 PI 6.54 6.40 6.28 6.18 6.09
33B 2048 None 5.82 - - - -
33B 8192 FT 5.88 5.99 6.21 - -
33B 8192 PI 5.82 5.69 Sl - -
33B 16384 PI 5.87 5.74 5.67 5.68 -
65B 2048 None 5.49 - - - -
65B 8192 PI 5.42 5.32 5.37 - -

Position Interpolation, June 2023

Rotary Positional Embeddings

Hi — N—Zi/d
N = 10,000

[T
|

fq(Xm,m)

rcos(mo,)]

|cos(m@,)]

cos(mf,)
cos(mé,)
cos(m@,)
cos(mébs)
cos(mébs)
Cos(m94)‘

Fast changing

\

AN

(431 o w N =

sin(mé6,)
sin(mé,)
sin(mé,)
sin(més;)
sin(més;)
sin(mé,)

~ L 7

Slowly changing

|sin(mé,).

sin(mé;)]

| |
EHHHEE ==

YaRN
Yet another RoPE extensioN method

3.8

CodelLlama-13b-hf
Yarn-Llama-2-13b-64k
Yarn-Llama-2-13b-128k
togethercomputer/LLaMA-2-7B-32K
CodelLlama-7b-hf
Yarn-Llama-2-7b-64k
Yarn-Llama-2-7b-128k

3.6 1

w
S
1

e
N
1

Perplexity (lower is better)
w
o

2.8 -

2.6 - //
2.4 - //
2.2

0 20000 40000 60000 80000 100000 120000

Context Window YaRN, Nov 2023

LongRoPE

| Pre-trained range | Unseen range i
1 |
o
= 0
x
-1
0 Normal 4096 Extrapolation 8192
—
&
w0
O
- o
Position Interpolatlon 8192
g 1 (—— Dim=0/64
\ —— Dim=40/64
} ‘ < \ . Dlm 60/64
O v ‘ N
8192
No interpolation for initial i positions LongRoPE: Non-uniform Position Interpolation and Extrapolation position

LongRoPE, Feb 2024

100 T ¥
¥ 1§
80r / | |
I B i ¥ LongLoRA-7B-100k
/ | —# Code LLaMA-7B-100k
_ 1 . | —e YaRN-LLaMA2-7B-64k
2 o0 / ' | © [—# YaRN-LLaMA2-7B-128k
°] |© [—m-LongRoPE-LLaMA2-7B-2048k
S 40 i : Mistral-78 (8K)
: | I ~®- YaRN-Mistral-7B-64k
./ ' I / —@- YaRN-Mistral-7B-128k
20+ / | '! —li—L ongRoPE-Mistral-7B-2048k
: —a
(‘.L ———f— =

8k 16k 32k 64k 128k 256k 912k 1024k 2048k

Context Window Size
LongRoPE, Feb 2024

100% 8 c——————8—§——8—% —a
\‘ \~.“/ \.‘ ‘\ ‘
ok |\ -® -LLaMA2-7B
80 A)' \ K \ .
\ \ \‘ : Mistral-7B
609 \ 1\ \ - LongLoRA-100k
1 1y —& -CodeLLaMA-100k
o0 =\ \ —& -YaRN-LLaMA2-128k
40%r 1\ 140 —~& -YaRN-Mistral-128k
X Vg —4—LongRoPE-LLaMA2-2048k
20%r i \\ —#-LongRoPE-Mistral-2048k
\ LT
0% NS "N — i y% P e

4k 8k 16k 64k 100k 128k 160k 256k 512k 1024k 1800k 2048k

Passkey retrieval accuracy
LongRoPE, Feb 2024

Limitations (PI, YaRN, LongRoPE)

» Require known target context length.
» Often require finetuning

» Works only with RoPE (Llama-2, Llama-3, PaLM)

Another Class of Methods for Long Context Extension:

Just “Change” the Attention Matrix

by adding Relative Positional Bias (the B matrix)

QK"
softmax F B

Ja

Relative positional encoding: e.g. T5 bias, and many
more...

B

by

b_;

QK"

softmax B
V Ak
B(m,n) = B(m,n) = B(m,n) =
~Tmin(m—-n,K) _Tlm — Tl| _rllog (1 + 7 |m — TlD
by | by 1 1 | o =
- b0 b 2 1 0 i jﬁiffij
T5 bias Alibi Kerple

QK"

softmax F B
v Ak
m-—n
BOm,n) = fo(—) B () = log(cx + 1)
Plot of y = log(cx + 1) for different values of c
Amplifying the differences among local A
positions d(m —n)
Bmm) =i)
¢(m)
Better short-sequence modeling
d(m —n) A
B(m,n) = i
() =Jo (¢ (max(L, m)) | —
FIRE Lo e

Functional Interpolation for Relative position Embeddings, 2024

Inference Speed

OK=512 1024 3072
Input Length
QK'
softmax - B

Ja,

Relative positional encoding: e.g. T5 bias, and many
more...

Sinusoidal
Rotary

TS5 Bias
ALi1Bi

b, | b

b, | b

T5 bias

C4 language modeling (large model) arXiv language modeling (large model) Github language modeling (large model)

>3-3' NoPE =T .7 NoPE 71 a0 NoPE e
= — = RoPE o al £ ||=i= RaPE 7 £ — = RoPE A
3321 == Alibi s e S | == Alibi ,z’ 3 — = Alibi PR s
2 — = Kerple ' PR aby . Kerple S i g3-5' — = Kerple ,,’ ’,4’
8 3.11{== T5'sRPEZ [8 | == T5'sRPE 7 ’,a’,’ a == T5'SsRPE ¢~ _~~ !
=y = F|IRE (OUrS) / D 5 | mee FIRE (ours) ,7 - ,’ = | mm= FIRE (ours) o ”
© 4 S / .~ » 2 3.0 s s
c 3.01 s 77 -t c R 7 c
o o 77 7 o
2 24 2 e 2
229 = - &5
S, 8l . Waggl---7 — 2
2.8 3 ' 2.01
r-' .
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Validation sequence length (x103) Validation sequence length (x103) Validation sequence length (x103)

Functional Interpolation for Relative position Embeddings, 2024

Layer 12

w0 3]St head
g e 2nd head
—_ VA N S R = 3th head
© = Ath head
S 1
o === 5th head
ot = 6th head
0 0
O == Tth head
o 1 == 8th head
g == Oth head
T ! D =] 0th head
; l T T T T T T | llth head
0 30 60 90 120 0 30 60 90 120 w=== 12th head
Relative distance Relative distance Relative distance

Visualization of FIRE learned position
biases

Functional Interpolation for Relative position Embeddings, 2024

Development Summary of
Positional Encoding Schemes

» Transformer: need input position information

» Absolute positional encoding

|

vV v Vv Vv

vV v v Y

Just concatenate the position t
BUT, really hard to learn
THEREFORE, sinusoidal

BUT, this seems arbitrary!

THEREFORE, we can DIRECTLY learn the positional encoding through
optimization, e.g. as in BERT

BUT, this requires known fixed length. Cannot work at all for L+1 position.
BUT, what we really want is relative position. Not absolute

Every day | walk my dog

| walk my dog every day

Development Summary of Positional Encoding Schemes (cont’'d)

» Relative positional encoding
» Example: T5 bias, learnable bias for query-key
» BUT, SLOW, challenging to do KV cache
» THEREFORE, Rotary position encoding
» BUT, poor length generalization
» THEREFORE,
» Positional interpolation
» YaRN

» LongRoPE
https://Iwww.reddit.com/r/LocalLLaMA/comments/1axhhs6/longrope extending Il
m_context window beyond 2/

» BUT, this requires finetuning and know the target sequence length
» THEREFORE, revisit attention bias from T5
» AliBi
» Kerple
» Sandwich
» BUT, this makes it hard to attend to long-range dependency
» So FIRE

https://www.reddit.com/r/LocalLLaMA/comments/1axhhs6/longrope_extending_llm_context_window_beyond_2/

A Controlled Study on Long Context Extension
and Generalization in LLMs

Yi Lu et al, https://arxiv.orqg/pdf/2409.12181

Video by: Prof. Alexander (Sasha) Rush of Cornell
https://www.youtube.com/watch?v=dc4chADushM

https://arxiv.org/pdf/2409.12181
https://www.youtube.com/watch?v=dc4chADushM

> wnN e

i

References for Positional Encoding

Attention is All You Need https://arxiv.org/pdf/1706.03762.pdf
RoPE (aka RoFormer) https://arxiv.org/pdf/2104.09864.pdf
ALiBi https://arxiv.org/pdf/2108.12409.pdf

Investigation on what positional embeddings learn
https://aclanthology.org/2020.emnlp-main.555.pdf

YaRN: Efficient Context Window Extension of Large Language Models
https://arxiv.org/pdf/2309.00071

Linear ROPE vs. NTK vs. YaRN vs. CoPE, July 2024
https://medium.com/@zaiinn440/linear-rope-vs-ntk-vs-yarn-vs-cope-
d33587ddfd35

FIRE: Functional Interpolation for Relative Positions improve Long Context
Transformers https://arxiv.org/pdf/2310.04418

Round and Round We Go! What Makes Rotary Positional Encodings
Useful ? Oct 2024, https://arxiv.org/pdf/2410.06205

62

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2104.09864.pdf
https://arxiv.org/pdf/2108.12409.pdf
https://aclanthology.org/2020.emnlp-main.555.pdf
https://arxiv.org/pdf/2309.00071
https://medium.com/@zaiinn440/linear-rope-vs-ntk-vs-yarn-vs-cope-d33587ddfd35
https://arxiv.org/pdf/2310.04418
https://arxiv.org/pdf/2410.06205

Work on Improving on Quadratic Self-Attention Cost

e Much recent work has gone into the question, Can we build models like Transformers
without paying the O(N?) all-pairs self-attention cost?

e For example, (Wang et al., 2000): Linformer : Self-Attention with Linear Complexity

Key idea: The Attention Matrix can be approximated by a Low-Rank matrix

=> Map the sequence length dimension to a lower-dimensional space for values, keys.

head; = Attention(QW 2, E;KWX, VW) —
QWE(E;KWK)T 1
= softmax i (B i) -E;, VWY, Concat
A / d k \l—v—/ 4 ‘ff
> kxd A 1
P:nxk Scaled Dot-Product
Attention P
120 } —— Linformer, k=2048
—e— Linformer, k=1024 1 *
— —&— Linformer, k=512 kxn
= 50 —-==- Linformer, k=256 Projection Projection El ? Fl = R
OEJ —-— Linformer, k=128 '
= —r— Transformer 4 1 s .
© y- p- p-
e or Linear Linear]] Linear
g | S [E—
£ o] — r 17 1
- —— _—— —— = —
,‘.‘_‘.‘_‘.:.-,-_1-_—.-_-.-_.-.-_-.-_-.:.:.'_'..-_‘.::_".::::.::.:..—- AV K Q

512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
Sequence length / batch size

Work on Improving on Quadratic Self-Attention Cost

e Much recent work has gone into the question, Can we build models like Transformers
without paying the O(N?) all-pairs self-attention cost?
e For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local windows,
looking at everything, and random interactions.

|

O O 0
O | |
L

9m m 5 9 5

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

Another Sparse (but fixed) Attention Pattern: Longformer

Key idea: use sparse attention patterns!

o

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

(Beltagy et al., 2020): Longformer: The Long-Document Transformer

Time Memory
2500 7 15000
== Full self-attention
2000 - ~&- Longformer-loop 12500 1
=¥ Longformer-chunks
< 560 =@- Longformer-cuda 10000 1
s S 7500
& 1000
1S 5000 1
500 A
2500 A
0 -
0

5000 10000 15000 5000 10000 15000
seq len seq len

More Efficient Attention via Sharing:
Group-Query Attention

KV Cache during Inference time in Transformers

(Q* K*T) * V computation process with caching

Keys_Transpose
Step 1 d
Queries Values Results
—
: ‘¥ X = :
— =
o
o4 64 (2
4
lCar hing K l(ach\'ng v
Restoring Restoring
from cache K from cache V
Step N Keys_Transpose
d Values
D
© Queries : Results
g |3 X~ X J—— | I
[64 64
o
64

5

Values that will be computed on this step Values that will be taken from cache

During interference time, K and V values computed from previous tokens in the windows are cached inside the GPU to
avoid unnecessary re-computation. However, since memory requirement for the K and V matrices grows linearly with
Context-length, KV caching creates a memory bottleneck within the GPU in practice.

More Efficient Attention via Sharing:

Multi-Head Attention ~ Multi-Query Attention Grouped Query Attention
MHA MQA GQA

........
PSSR NS
......

.....
.....

High quality Loss in quality A good compromise
Computationally slow Computationally fast between quality and speed
Attention is All You Need (2017) Fast Transformer Decoder: GQA: Training Generalized
One Write-Head Multi-Query Transformers from
is All You Need (2019) Multi-Head Checkpoints (2023)

GQA interpolates between MHA and MQA. It reduces Memory Bandwidth overhead during inference time while
avoiding excessive loss in accuracy as fewer K and V matrices are loaded into the Decoder (KV-cache in GPU RAM)

Uptraining for MQA

1. Key and Value projection matrices (K, V) are mean pooled into a single
projection matrix

1. Works better than selecting one key/ value projection matrix
2. Orrandomly initializing the Projection Matrix

2. The pooled projection matrix is then trained for a = 5% of its original
training steps

Amodel

dy Key Projection K4 ‘

dn

Key Projection K, ‘ dmodel

Mean

Key Projection K; d
Pool oL h

dy, Key Projection Ky ‘

—

Figure 1: Overview of conversion from multi-head to
multi-query attention. Key and value projection matri-
ces from all heads are mean pooled into a single head.

Group Query Attention (GQA)

GQA is the natural interpolation of MQA and MHA: heads are divided into G
groups, with each group sharing a single key and value head

When converting MHA to GQA, mean pool each group’s key/value heads into
a single key/value head, and train for a steps

GQA, like MQA, is for reducing the reloading of K, V during decoder
inference, and thus is not applied to encoder self-attention layers

Multi-head Grouped-query Multi-query
Values U U U U U
Keys D D D D D
TT T T

--(0000000 00000060 0EO0DON

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query
attention shares single key and value heads across all query heads. Grouped-query attention instead shares single
key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

Group Query Attention Results

~ hssssssssssssssssssEsEsssEsEEEsEasas
® Py
i L GoaxxL MHA-XXL % 9l
5 2,
£ ® o 1
*5 46.5 MQA-XXL E
CF') = B
L ‘ !
1 4 8 16 32 64
46
.MH A-Large GQA groups
Figure 6: Time per sample for GQA-XXL as a function
0 0.5 ! 1.5 of the number of GQA groups with input length 2048
Time per sample (ms) and output length 512. Going from 1 (MQA) to 8
groups adds modest inference overhead, with increasing
Figure 3: Uptrained MQA yields a favorable tradeoff cost to adding more groups.
compared to MHA with higher quality and faster
speed than MHA -Large, and GQA achieves even . = . —
better performance with similar speed gains and Model | Tinter Average | CNN arXiv PubMed MediaSum MultiNews WMT TriviaQA
comparable quality to MHA-XXL. Average perfor- | s | R Ry Ry Ry Ry BLEU F1
mance on all tasks as a function of average inference MHA-Large | 037 460 | 429 446 46.2 355 46.6 277 782
time per sample for T5-Large and T5-XXL with multi- MHA-XXL 1.51 47.2 43.8 45.6 475 36.4 46.9 28.4 81.9
head attention, and 5% uptrained T5-XXL with MQA MQA-XXL 0.24 46.6 430 45.0 46.9 36.1 46.5 28.5 81.3
GQA-8-XXL | 0.28 47.1 435 45.4 47.7 36.3 47.2 28.4 81.6

and GQA-8 attention.

Table 1: Inference time and average dev set performance comparison of TS5 Large and XXL models with multi-head
attention, and 5% uptrained T5-XXL models with multi-query and grouped-query attention on summarization
datasets CNN/Daily Mail, arXiv, PubMed, MediaSum, and MultiNews, translation dataset WMT, and question-
answering dataset TriviaQA.

Uptraining Results for MQA and GQA

v |

First

Random

04.4 54.6 54.8 55 55.2 55.4 55.6

Figure 4: Performance comparison of different check-
point conversion methods for T5-Large uptrained to
MQA with proportion o = 0.05. ‘Mean’ mean-pools
key and value heads, ‘First’ selects the first head and
‘Random’ initializes heads from scratch.

T T T T

o BTF

Q

3 56/

E =»=: MHA

%55* == GQA | |

A —4— MQA
54 | -

\ w | \
0O 0.02 0.04 0.06 0.08 0.1
Uptraining proportion «

Figure 5: Performance as a function of uptraining pro-
portion for TS XXL models with MQA and GQA-8.

Multi-head Latent Attention (MLA) by DeepSeek

Values

77777770

24

N /7777777

- 72
2222
777

O /777777,
Q7772

7777723 - 22222770
" 0 -
7777770 - S22
777777 - GO207077

0
<
w
R /A B
e LD
S 7/ // /77 B
e QUL
o QLA
R /S
R 7/ /7777 B
R /77

—
—
=
—
=),
—

1000000

Source: DeepSeek v2 Technical Report

QL

WL A/ B

.
. 0 -, .
. . . .

""""""""""""""
............

NN Cached During Inference
Multi-Head Attention (MHA) : Grouped-Query Attention (GQA) | Multi-Query Attention (MQA) ! Multi-Head Latent Attention (MLA)

e
eee
e
.........
TN
N

LSS A S S

e

.
.

Latent KV

MHA

qe, ke, v € R tth)ugh three matrices W2, WK, WY e Rénxd, respectively:
q = Wth
k, = WXh,,
Ve = thn

Then, q,, ki, v will be sliced into n, heads for the multi-head attention computation:

[95159,2; -+ Qe] = G,

[kz,l;k:,zi ey kt,n;,] =k,

[Ve1;ve2; s Ven,] = Ve,

q ki
Vdr

0 . P
u=w [ot,ll 0¢2;...; ot,ﬂp.]/

t
0 = Z Softmax;(Wiir
1

VS. MLA

(1)
(2)
(3)

@)
(©)
()

@)

(8)

where q,;, ki ;, v; € R% denote the query, key, and value of the i-th attention head, respectively;
W9 e R™dm denotes the output projection matrix. During inference, all keys and values need
to be cached to accelerate inference, so MHA needs to cache 2nydl elements for each token. In
model deployment, this heavy KV cache is a large bottleneck that limits the maximum batch

size and sequence length.

Source: DeepSeek v2 Technical Report

C. Full Formulas of MLA

In order to demonstrate the complete computation process of MLA, we provide its full formulas
in the following:

c2 = w>?hn,, (37)
(9519555 3 96n,] = aF = W', (38)
(a1 GEa; 3 Qi) = 4F = ROPE(W?Rc), (39)
qei = [qg,‘; qf,,-]/ (40)
=w"h,, (41)
(K kG,] = kf = WOk, (42)
= RoPE(WXRh,), (43)
ke = [KE; KA, (44)
[VE1 VEgi i Ven,) = v§ = WY, (45)
t T-k "
0 = ZSoftmaxj(lixd v, (46)
j=1 dp + df
u; = WO[0,,1;002; i O,], 47)

where the boxed vectors in blue need to be cached for generation. During inference, the naive
formula needs to recover k¢ and v¢ from ¢ for attention. Fortunately, due to the associative
law of matrix multiplication, we can absorb WYX into WY?, and W'V into WP. Therefore, we do
not need to compute keys and values out for each query. Through this optimization, we avoid
the computational overhead for recomputing k¢ and v¢ during inference.

Additional References: https://epoch.ai/gradient-updates/how-has-deepseek-improved-the-transformer-architecture

https://planetbanatt.net/articles/mla.html

https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/

https://epoch.ai/gradient-updates/how-has-deepseek-improved-the-transformer-architecture
https://planetbanatt.net/articles/mla.html
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/

Decoupled RoPE is needed for MLA

2.1.2. Low-Rank Key-Value Joint Compression

The core of MLA is the low-rank joint compression for keys and values to reduce KV cache:

&V _ PRV, ©)

KE = WK, (10)

vesWwVer Y, (11)

where &V ¢ R% is the compressed latent vector for keys and values; d.(< dyn;) denotes the KV
compression dimension; WXV ¢ R4 j5 the down-projection matrix; and WK, W% e [Rénnnxdc
are the up-projection matrices for keys and values, respectively. During inference, MLA only

needs to cache cXV, so its KV cache has only d.I elements, where I denotes the number of layers.

In addition, during inference, since WYX can be absorbed into W%, and WY can be absorbed
into W°, we even do not need to compute keys and values out for attention. Figure[3)intuitively
illustrates how the KV joint compression in MLA reduces the KV cache.

Moreover, in order to reduce the activation memorv during training, we also perform
low-rank compression for the queries, even if it cannot reduce the KV cache:

C? =wPe h,,
ol =W

(12)
(13)
where ¢? € R% is the compressed latent vector for queries; d/(< dxn,) denotes the query

compression dimension; and WP2 ¢ Ré*d, WU ¢ Rém*d are the down-projection and up-
projection matrices for queries, respectively.

Source: Source: DeepSeek v2 Technical Report /

2.1.3. Decoupled Rotary Position Embedding

Following DeepSeek 67B (DeepSeek-Al} [2024), we intend to use the Rotary Position Embed-
ding (RoPE) (Su et al.}[2024) for DeepSeek-V2. However, RoPE is incompatible with low-rank
KV compression. To be specific, RoPE is position-sensitive for both keys and queries. If we apply
RoPE for the keys k¢, WU in Equation[10]will be coupled with a position-sensitive RoPE matrix.
In this way, WYX cannot be absorbed into W2 any more during inference, since a RoPE matrix
related to the currently generating token will lie between W? and WYK and matrix multiplication
does not obey a commutative law. As a result, we must recompute the keys for all the prefix
tokens during inference, which will significantly hinder the inference efficiency.

As a solution, we propose the decoupled RoPE strategy that uses additional multi-head
queries qf}; € R% and a shared key k? € R% to carry RoPE, where d? denotes the per-head
dimension of the decoupled queries and key. Equipped with the decoupled RoPE strategy, MLA

performs the following computation:

(954 f5 - Aimy) = 97 = ROPEW D), (14)
kR = RoPE(WXRh,), (15)
qu:= [af;azil, (16)
ke = [KC;KE], (17)
t ¥

ki .
o, =) Softmax;(———)v;;, (18)

;‘ Jan+d®
u, = W0[04,1;042; ... Oy my |, (19)

where W ¢ R%™*d and WKR ¢ R%*d are matrices to produce the decouples queries and key,
respectively; RoPE(-) denotes the operation that applies RoPE matrices; and [-; -] denotes the
concatenation operation. During inference, the decoupled key should also be cached. Therefore,
DeepSeek-V2 requires a total KV cache containing (d. +df)! elements.

https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/

Multi-head Latent Attention (cont’'d)

Multi-Head Latent Attention (MLA)

= Cached During Inference
Output Hidden “t[OOOO OOOO]
1

[Multi-Head Attention]
t

([KED |l[

concatenate

k# é@ﬂ (kg @ {vesl @
|

apply
RoPE

[OO OO] Latent c,? Latent £V ([- Q)
t T

Source: DeepSeek v2 Technical Report

Hardware-Aware Attention WITHOUT Approximation

GPU basics

1. A100 GPU, a standard GPU (was SOTA in 2020)
1. 40— 80GB of HBM, 1.5-2.0TB/s
2. 20MB of SRAM, 19TB/s

3. SRAM are much smaller, but much faster

2. GPUs have many threads to execute an operation (called a kernel).
Each kernel loads inputs from HBM to registers and SRAM,

computes, then writes outputs to HBM
3. Operations are either (depending on op-to-mem-access ratio)

1. Compute-bound: e.g., matrix multiply, convolution

2. Memory-bound: e.g., activation, dropout, sum, softmax, batch norm

First Component of Modern GPU:
Big Compute (eg., NVidia Tensor Cores)

Tensor cores multiply 16x16
matrices (very roughly)

GPU TFLOPs over Time

® General ® Tensor Core

1000

Speed difference with tensor
cores is increasing

* 4xon V100,

* 8xon Al100, and

* 16x on H100

With tensor cores versus
without (across precisions).

750

500

TFLOPs

250

2016 2018 2020 2022

Year

“All that matters is locality.” —
Credit: Dan Fu Paraphrasing, Mark Horowitz.

Memory Hierarchy of Modern GPU:

(Simplified) Memory hierarchy

» Registers

> SRAM Registers 19TB/s

» Memory 64 KB 4
SRAM 1.5
20 MB

Small, Fast memory .

40 GB

(Registers/SRAM)
Big, Slow memory (HBM)

Database people count 10 as reads-and-writes GPU Memory
from HBM (slow memory). Hierarchy

FlashAttention (v1, v2):
Fast & Memory-Efficient Exact Attention w/ I0-Awareness

* Minimize 10 (HBM to SRAM) — not FLOPs

Main ldea:

* Aggressive fusion: when you pull in data use it.

Two classical ideas from database researchers.
/ @ Up to 72% Utilization—
e | 15% faster BERT on MLPerf 1.1
Tri Dao Dan Eu

Uesmbiego — We're Training Al Twice as Fast This

JACOBS SCHOOL OF ENGINEERING

PRINCETON Year as Last > New MLPerf rankings show

UNIVERSITY

. training times plunging . .
together ai L . oome %0 ot somn & v e D ML Perf Winners use it!

https://crfm.stanford.edu/2023/01/13/flashattention.html https://spectrum.ieee.org/mlperf-rankings-2022

How FlashAttention works ?

Prof. Jia bin Huang of UMD
https://www.youtube.com/watch?v=gBMO1JZav44

[From Online Softmax to FlashAttention] https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf

https://www.youtube.com/watch?v=gBMO1JZav44

* Minimize 10 (HBM to SRAM) — not FLOPs

Minimize IO to HBM in Flash Attention

1] B [»
Hy Database people call “nested loop join”
I — M r(Q) =9 is the rows of Q, |Q| is number of tiles.
== Q| +r(Q)(]K| + |V|) + |O] = 18 + 9%(18+9) + 9=270 10
Q K' V O

* Minimize 10 (HBM to SRAM) — not FLOPs

Minimize IO to HBM in Flash Attention

Database people call “nested loop join”
r(Q) =9 is the rows of Q, |Q| is number of tiles.

|Q] +r(Q)(|K| + [V])+ |O] = 18 + 9%(18+9) + 9 =270 10

Database Idea: Block Nested Loop Join.
Read 3 blocks at once, so b(Q) =9/3 = 3.

|Q] + b(Q)(|K| + |V])+ |O] =18 + 3%(18+9) + 9 = 108
1O

Same FLOPS but ~3x reduction in |0 w/ block size 3.
Flash Attention A100 uses 8x8 blocks.

O[T OLLIIIITTIT]

<[T <LIIITHETT]

|O-Aware Attention

n Data in
HBM

A = exp(QKT)
W = AV %

Z=A.sum(-1)
0=W/Z

. = - o’ -
* Aggressive fusion: when you pull in data use it. QPN

n . . Data in SRAM/Registers
S

Al 01

)

A, = exp(Q;K;.T) // attention scores
z, = A;.sum(-1) // normalization

0, =A,V,/z, // compute output.
Free(Ky,Vi,Aq)

Load(Q,K; V;

Incorrect Normalization! Normalization should

depend on the rest of K and V—we haven’t seen
them!

|O-Aware Attention

n Data in
HBM

A = exp(QKT)
W =AV
Z=A.sum(-1)
0O=W/Z

:

i

'_F = o
* Aggressive fusion: when you pull in data use it. “Q

b

\\. s

s
= 7

. . Data in SRAM/Registers
| Zq l

O ==

Load(K, V,)
A, = exp(Q,K,.T) // attention scores
z, =2z,+A,.sum(-1) // normalization

0, = A,V,/z,// compute output
0, =0,+2,/2,0,// renormalize O,!
Free(K,,V,,A; 2, 0,)

NB: To Fix Normalization only need to keep last (O;,Z;)

Summary of Block-Aware Attention to
FlashAttention

* Minimize HBM 10 by blocked 1/0. %EEEEHEE

\' o

* To fuse, we aggregate like running sum to
compute attention exactly.

* In database terms, softmax is an algebraic
aggregation [Gray07].

* FlashAttention essentially block-nested loop
join from classical databases.

There is a whole canon of systems to re-explore for Al!

Jim Gray, Turing Award 1998.

Open-Source, Quickly Adopted by the Al community |

O PyTO rch & o
S

Microsoft NVIDIA

Speed (TFLOPs/s)

FlashAttention: 6-10x speedup, 10-20x memory reduction

FlashAttention Memory Reduction

Attention forward + backward speed (A100 80GB SXM4)

)

I Pytorch $

200 [FlashAttention [0}
mm xformers g

Bl FlashAttention Triton 165 171 i

mmm FlashAttention-2 <

150 A -~
c

(@]

o~

5

100 A ge]
(O]

o

&

50 A o
€

(0]

=

512 1k 2k 4k 8k 16k
Sequence length

6-10x speedup — with no approximation
10-20x memory reduction

20 A

15 A

10 A

128

256

512 1024 2048 4096
Sequence Length

Mixtral of

experts

A high quality Sparse Mixture-of-Experts.

[e GPT4()
Mmtune&t&meri&(h/loE) architecture for Transformers

8x22b&tr=udp%3A% 2F 1.demo %3A1337%2Fannounceddtr
=http%3A%2F%2Ftracker.opentrackr.o 3A1337 t2Fannounce &deepseel(

/ DeepSeekMoE: Towards Ultimate Expert Specialization in
{ Grok

Mixture-of-Experts Language Models

What is a Mixture of Expert (MoE) ?

Dense Model Sparse Model
e ‘a”’ —hl Add + Normalize I‘—
¥ A = '—>[Add + Normalize s - A T k
A Y oken-
[- -] ! [mne) (=) @@@ specific
SN S i
o P i routing
o b
,—»[Add + Normalize
Self-Attention T T 7y 7y
T o Self-Attention
X AR - (—>[Add + Normalize]1—
T ammm owmmm L - f 1
“The" “"Dog" So . Self-Attention
=g e
« [T % [TTITT]

More Parameters

[Fedus et al Switch Transformer ... 2022]

e Replace the VERY BIG Feed Forward Network (FFN) with (multiple) not-as-BIG FFNs
and a Selector Layer / Gating Function to Pick “TopK” FFNSs.
e Can increase # of Experts without affecting FLOPS (during inference time)
* For each token, only a subset (TopK) of Experts need to be Active during inference
e Performance better than one single Very BIG FFN of the same total parameter count !

Open-source/
Open-weights Models

(=

o’
H Mixtral-8x7B i
2024
(=4 \
o@ MoV 4 A~ Skywork 2.0

%7 LLAMAMOE %) OpenMoE

MoE Models

B" MoLE inspur Yuan2.0M32

Jamba é‘r(Arctic (O DeepSeek-V2
DBRX =. WizardLM-2-8x22B
ﬂ Grok-1 Iz JetMoE

7 Qwenl5MoE-A27B |} Mixtral-8x22B

Mar.
@ DeepSeeckMoE \ \Feb- / \\
T. /
7/

—
b5 4

~ —\ Dec. KUNLUN
Soft MoE
9 / ﬂ& abab6

%@ MoE-LLavA \ ——
{5 Chinese-Mixtral $x7B /Apr.< \v DS-MoE

AN
KUNLun Skywork-MoE

Sep.
B AdaMix SMEAR _\ |
00 BaseLayer (X NLLB _\ ; M
I A Omni-SMoLA
m Meta-MoE B Swin-MoE - J
0
G vmeE 7 ST-MoE /
[May
“)) CPM2-MoE @ DeepSpeed-MoE e
G swita M \ Proprietary Models
~ /2073 G Brainformer
«7 GShard /2022 _____________
'
0 m2m100 —\ 2021 W2 pancu s ! NLP
2020 HUAWEL :
— 2017 —— 2018 ~ ! Vision
= £7 M6T «7 LIMoE '
G M O MMeE G aam {5 Expert-Choice MoE |
Tencent PLE m Hash Layer /) MoA | RecSys

Test Loss
<A < <A < o
© N D [0} ©

»
©

o
~

Why do MoEs become popular ?

-~
-~
~
-
~

T
Sparse Model Parameters

-1.21

|
—_
w
1

|
-
~
Il

Switch-Base: 128e
Switch-Base: 64e
Switch-Base: 32e
Switch-Base: 16e
T5-Base

Same FLOP, larger parameter-count does better

1 2 3 4

Training Step 1e5

[Fedus et al Switch Transformer ... 2022]

Why do MoEs become popular ?

Faster to train MoEs

-1.21

—1.31

Neg Log Perplexity
| [| [[[
@ W 2 o & =

|
=
o

7x Speedup

- Switch-Base: 128e
- Switch-Base: 64e
Switch-Base: 32e

— T5-Base

50 100 150 200 250 300 350

Training Time

[Fedus et al Switch Transformer

... 2022]

Why do MoEs become popular ?

Parallelizable to Many Devices (Machines) - Example from Gshard

Transfomer E::Ei> MoE Transfomer
Encoder Encoder
Encoder
output
T
/—) Add & Norm | \

Encoder
output
T
//::; Add & Norm ‘4\\\\

Feed Forward

Nx

—> Add & Norm

Multi-Head
Attention

/

Input embeddings +
Positional embeddings

Feed Forward

— Add & Norm

Multi-Head
Attention

(N/2)x

B\ RE Aoy I

. AWGNTm

Multi-Head
Attention

A

Input embeddings +
Positional embeddings

4

Encoder
output (shard 1)

MoE Transfomer Encoder
with device placement

e

I
Add & Norm

Feed Forward
FFN

Add & Norm

Multi-Head
Attention

Add & Norm

Encoder
output (shard E)

™ =

(N/2)x
|
|
11-to-All Combine

~ Add & Norm

Feed Forward
FFN

Multi-Head
Attention

)

(N/2)x

Model-parallel
MoE

Multi-Head
Attention

Device 1/

Devices
1...E

Input embeddings +
Positional embeddings
fehard 1)

Multif
Atten

Device y

Positional embeddings

Input embeddings +
(shard E)

Scores

75% |

Some Recent MoE Results: Mixtral / DBRX / Grok

200

Language Understanding (MMLU) Programming (HumanEval) | Math (GSM8K)

73.7% 73.0%

| I

& DBRX

M Mixtral-8x7B
Q LLaMa2-70B
4 Dense-132B

70.1%

66.9%
63.2% 62.9%
61.1%
54.8% 54.1%

150

100

0 |II ||II |III |III IIII III. II.I

MESXN4+ MSXN4+ MSHN4+ MSRX4+ MSHX4+ MSX4+ MSXX4

(o
o

Output tokens per second per user

1 2 4 8 16 32 64
0& &,«0 ,é @\“
N Number of Concurrent Users
Performance Inference throughput

+ Most of the highest-performance Open Models are MoEs, and they are quite fast !

Some Recent MoE Results: Qwen & DeepSeekMoE(2024)

Model MMLU GSM8K HumanEval Multilingual MT-Bench Model #Parameters #(Activated) Parameters
Mistral-7B 64.1 47.5 274 40.0 7.60 Mistral-7B 7.2 7.2
Gemma-7B 64.6 50.9 32.3 - - Qwen1.5-7B 77 7.7
Qwen1.5-7B 61.0 62.5 36.0 45.2 7.60 Gemma-7B 8.5 7.8
DeepSeekMoE 16B 45.0 18.8 26.8 - 6.93 DeepSeekMoE 16B 16.4 2.8
Qwen1.5-MoE-A2.7B 62.5 61.5 342 40.8 717 Qwen1.5-MoE-A2.7B 14.3 2.7

< Chinese LLM companies, e.g. Qwen and DeepSeek, have shown strength in their MoE work on
the smaller-model end !

Recent Ablation Study on MoE Performance: DeepSeek

Metric # Shot | Dense Hash Layer Switch
Total Params N/A 0.2B 2.0B 2.0B
Activated Params N/A | 0.2B 0.2B 0.2B
FLOPs per 2K Tokens N/A 29T 29T 29T
Training Tokens N/A | 100B 100B 100B
Pile (Loss) N/A | 2.060 1.932 1.881
HellaSwag (Acc.) 0-shot | 38.8 46.2 49.1
PIQA (Acc.) 0-shot | 66.8 68.4 70.5
ARC-easy (Acc.) 0-shot | 41.0 45.3 45.9
ARC-challenge (Acc.) 0-shot | 26.0 28.2 30.2
RACE-middle (Acc.) 5-shot | 38.8 38.8 43.6
RACE-high (Acc.) 5-shot | 29.0 30.0 30.9
HumankEval (Pass@1) 0-shot | 0.0 1.2 24
MBPP (Pass@1) 3-shot | 0.2 0.6 0.4
TriviaQA (EM) 5-shot | 4.9 6.5 8.9
NaturalQuestions (EM) 5-shot 1.4 1.4 25

+ Recent Ablation study on MoEs shows they are generally good !

Performance of DeepSeekMoE 16B (2024)

52 DeepSc—:::kMoE 16B
L]
50 LLaMA2 7B
o
C 48
©
€ 46 LLaMA 7B
(@]
Falcon-7B
T 44 bk
Q. Open LLaMA 7B
8142* ol .o
© 40 L "'RedPajar.na-lNCITE 7B
4 RedPajama-INCITE 3B GPT-) 6B
< 38 © «Open LLaMA 3B
OPT 2.7B,Pythia 2.8B
36 .-~ 'e_ +BLOOM 3B
_GPT-neo 2.7B ' ‘ ' '
2 3 4 5 6 v

Number of Activated Parameters (Billions)

Maetric

Shot | DeepSeek 7B (Dense) DeepSeekMoE 16B

Total Params N/A 6.9B 16.4B
Activated Params N/A 6.9B 2.8B
FLOPs per 4K Tokens ~ N/A 183.5T 744T
Training Tokens N/A 2% 2T
Pile (BPB) N/A | 0.75 0.74
HellaSwag (Acc.) 0-shot 754 771
PIQA (Acc.) 0-shot 79.2 80.2
ARC-easy (Acc.) 0-shot 67.9 68.1
ARC-challenge (Acc.) 0-shot 48.1 49.8
RACE-middle (Acc.) 5-shot 63.2 61.9
RACE-high (Acc.) 5-shot 46.5 46.4
DROP (EM) 1-shot 349 329
GSMSK (EM) 8-shot 174 18.8
MATH (EM) 4-shot 33 43
HumanEval (Pass@1) 0-shot 26.2 26.8
MBPP (Pass@1) 3-shot 39.0 39.2
TriviaQA (EM) 5-shot 59.7 64.8
NaturalQuestions (EM) 5-shot 222 25.5
MMLU (Acc.) 5-shot | 48.2 45.0
WinoGrande (Acc.) 0-shot | 70.5 70.2
CLUEWSC (EM) 5-shot 73.1 72.1
CEval (Acc.) 5-shot 45.0 40.6
CMMLU (Acc.) 5-shot 47.2 425
CHID (Acc.) 0-shot 89.3 89.4

Source: DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

Performance of DeepSeek-V?2

Deepseek-V2 Deepseek-Coder-V2
236B total parameters, 21B are activated. Continue pretraining from an intermediate checkpoint of
2 shared experts and 160 routed experts (6 select). Deepseek-V2 (4.2T) and further train 6T. Total 10.2T tokens.

80 DeepSeek-V2 °
Y Mixtral 8x228 -~ LLaMA 3708 _
® Q Command R+ vz DeepSeek-Coder-V2 GPT-4-Turbo-0409 Gemini-1.5-Pro Claude-3-Opus Llama-3-70B Codestral
= DBRX Qwenl.5 72B o 100 -80
3 75 | ° 949 950 ;
o % = e 68.4 -70
E QwenI5328 DeepSeek 678 sl o g, g s g
- 70 Maas - % 849 % % 7.4 6o
Mixtral 8x7B g . 7 7
Q IXtral ox 1) @] % 17504 g g 511
§ & Command R LLaMA 2 70B g = é : é é = L%
g 651LLaMA 388 g é ? -1 g g % "
s ® LLaMA 1 658 t 7 p- 7 7 % | -
5) ® | |aMA 2 348 ‘ 8§07 e 7 % % %
< Mistral 7B LLaMA 1 Family % 7 7 - 7 7 7 ar ~30
601 LLaMA 2 Famil 7 7 7 % 7 7
g ;i / ¢ % . / /
a & LLaMA 3 Family ; é % é 15 g é é it
55 LLaMA 1 338 g;);:r:wlat\adm;)}/’amily é Z g Z é g % = |
| ® wenl. mi
LLaMA 2 138 . e % Z é s Z Z Z é Z

0 20 40 60 80 100 porsmr iy e s o
Activated Parameters (Billions)

-0
veCodeBench SWE-Bench

%

Why haven’t MoEs been more popular before ?
Infrastructure is complex / advantages on multi node

At a high level, sparsity is good when you have many accelerators (e.g. GPU/TPU) to host all
the additional parameters that comes when using sparsity. Typically models are trained using data-
parallelism where different machines will get different slices of the training/inference data. The
machines used for operating on the different slices of data can now be used to host many more
model parameters. Therefore, sparse models are good when training with data parallelism and/or
have high throughput while serving: training/serving on many machines which can host all of the
parameters.

[Fedus et al 2022]
Training objectives are somewhat heuristic (and sometimes unstable)

Sparse models often suffer from training instabilities (Figure 1) worse than those observed in stan-
dard densely-activated Transformers.

W w
a & 9
S & ©

~ ®

a o

Training Loss
N
S

Training Loss

Q a
=]
NS

o
o O

0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000

Step Step [Zoph et al 2022]

What MoEs generally look like ?

Typical: replace MLP with MoE layer Less common: MoE for attention heads

5)

L/
MLP | | MLP
3 4

/A By

Sparse Model

¥ el —r{ Add + Normalize }‘—

MLP

/L /
R [D@ @[:] o
—
—-[Add + Normalize |1—
Self-Attention T T
T .~ Self-Attention
X TRu .. ﬁ ﬁ
X1 X2

“The" “Dog"”

Layer Norm

\ J

[ModuleFormer, JetMoE]

Key Design Variations of MoEs

Most recent models place
MoEs in every layer

Some recent models
apply Shared Experts

Reference Models FZ:':.? ,‘;;‘;I';‘ ot dfpn donpers OL OH ds pracemett s e
6008 2/2048 1024 8192 dgp 36 16 128 12 ReLU 0
GShard [86] 2008 2/2048 1024 8192 dpga 12 16 128 12 ReLU 0
(2020) 1508 2512 1024 8192 djga 36 16 128 172 RelU 0
37B 2/128 1024 8192 dyfs 36 16 128 12 ReLU 0
7B 1/128 768 2048 dppa 12 12 64 12 GEGLU 0
Switch [49] 26B 1/128 1024 2816 dfgm 24 16 64 12 GEGLU 0
(2021) 305B 1/64 409 10240 dpy, 24 64 64 172 GEGLU 0
15718 1/2048 2080 6144 dyp, 15 32 64 1 RelU 0
0.1B/1.9B 2/64 768 3072 dpga 12 12 64 1/2 GEGLU 0
GLaM [44] 1.7B/27B 2/64 2048 8192 dppe 24 16 128 12 GEGLU 0
(2021) 8B/143B 2/64 409 16384 dgg, 32 32 128 12 GEGLU 0
64B/1.2T 2/64 8192 32768 dps, 64 128 128 12 GEGLU 0
350M/13B 21128 1024 ddmodet dffa 24 16 64 1/2 GeLU 0
DeepSpeed-MoE [121] 1.3B/52B 2/128 2048 Adpogeq dpp, 24 16 128 12 GeLU 0
(2022) PR-350M/4B 2/32-2/64 1024 4dpogy drgn 24 16 64 1/2,10L-32E, 2L-64E GeLU 1
PR-13B/31B 2/64-2/128 2048 Admodet drfa 24 16 128 1/2,10L-64E,2L-128E GeLU 1
ST-MoE [197] 0.8B/4.1B 232 1024 2816 dgp 27 16 64 1/4,addextraFFN GEGLU 0
(2022) 32B/269B 2/64 5120 20480 dpsn 27 64 128 1/4,add extra FFN GEGLU 0
Mixtral [74] 13B/47B 2/8 4096 14336 dpm 32 32 128 1 SwWiGLU 0
(2023) 39B/141B 28 6144 16384 drp, 56 48 128 SwiGLU 0
3.0B/6.7B 2116 409 11008 688 32 32 128 1 SwWiGLU 0

LLAMA-MoE [149] p
(2023) 3.5B/6.7B 416 409 11008 688 32 32 128 1 SwWIiGLU 0
3.58/6.7B 28 409 11008 1376 32 32 128 1 SwWiGLU 0
DeepSeckMoE [30] 0.24B/1.89B 8/64 1280 Yy 9 10 128 1 Sw?GLU 1
(2024) 2.8B/16.4B 8/66 2048 10944 1408 28 16 128 1, exceptlstlayer SwiGLU 2
22B/145B 16/132 409 - Ldpg, 62 32 128 1,exceptlstlayer SwiGLU 4
) 339M/650M 2/16 768 3072 dpys 12 12 64 /4 SWIiGLU 1
OpenMoE [172] p

(2028) 26B/8.7B 2/32 2048 8192 dpy, 24 24 128 1/6 SWIiGLU 1
6.8B/34B 232 3072 12288 dpg, 32 24 128 4 SWIiGLU 1
Sweat (:0’;"‘;5 U5 781438 8/64 2048 5632 1408 24 16 128 1 SwiGLU 4
D'::XME)}"] 36B/132B 416 6144 10752 dy;, 40 48 128 1 SwiGLU 0
J“&:‘;};"'] 12B/52B 216 0% 1% dy, 2 2 a2 . SWIGLU 0
Sk"w°z;:‘;ﬁ 0541 p1468 216 4608 12288 dgp, 52 36 128 1 SWIiGLU 0
Yuan20-M32[166] 405,408 2/32 2048 8192 dy, 24 16 256 1 SWiGLU 0

(2024)

Key Design Variations of MoEs

e Routing Algorithm [to select which Expert(s)]

e Sizes of Experts

e Training Objectives

Network types FFN, Attention

Fine-grained experts
Shared experts
Activation Function
MoE frequency

Training auxiliary loss

64 experts/128 experts/...
Isolated experts
ReLU/GEGLU/SwiGLU
Every two layer/Each layer/...

Auxiliary loss/Z-loss/...

Training Objective

Importance Loss: Encourage ALL experts to have Equal Importance

Load Loss: Ensure Balanced Load across different Experts

Auxiliary Loss: Mitigating Load Balance Losses

Z-Loss: Improving Training Stability by Penalizing Large Logits

MI-Loss: Mutual Information (MI) b/w experts and tasks to build task-expert alignment

Reference Auxiliary Loss Coefficient

Shazeer et al.[135], V-MoE[128] Limportance + Lioad Wimportance = 0.1, Wioad = 0.1
GShard[86], Switch-T[49], GLaM[44], Mixtral-8x7B[74], DBRX[34],
Jamba[94], DeepSeekMoE[30], DeepSeek-V2[36], Skywork-MoE[154]

ST-MoE[197], OpenMoE[172], MoA[182], JetMoE [139] L+ Lz Waux = 0.01, w, = 0.001
Mod-Squad[21], Moduleformer[140], DS-MoE[117] Ly wyr = 0.001

Laux Waux = 0.01

Routing Algorithm (aka Gating) - Overview

Tokens Tokens
T 2 {18 T T3
L N phoose Top-_l<
Al I ¥' il Il I Al f : :)
o
N - _|2 1 AN a (7] | I I
T F o 1 1
O | @ O ™
o w |l o uw
x o x . 1 I
L = O 1 1T B L T |
vl 5|
T T T t }
L0 L0
L L |
Token chooses Expert chooses

expert

token

Experts

ES3 E2 Ei

E4

o)
i1

Tokens
T T2 713

4 -)

|| Globally ||
Decide Expert

Assignment

A 4

Global routing via
optimization

e Many of the Routing Algorithms boil down to “Choose Top K"

[Fedus et al 2022]

Top-k

Hashing

Common Routing Variants in Detail

Top-2 Routing

v[TTTTT]

,—>[Add + Normalize
)
X N R« o X

Hash Routing
vi EE]%EEEI YLITTTT]
r—)[Add + Normalize]1—

AN

A
FFN1 FFN 2 FFN 3 FFN 4 FFN1 FFN 2 7&/

ash

2z

Used in most MoEs

Switch Transformer (k=1)
Gshard (k=2), Grok (2), Mixtral (2),

Qwen (4), DBRX (4),
DeepSeek (7)

Common baseline

[Fedus et al 2022]

RL to learn routes

Solve a matching

problem

Other Routing Algorithms

Reinforcement Learnin

D]T—.EEEI EEI%EEEI
,—bl Add + Normalize]‘—

FFN 1

FFN 2 EDIEE -
Loss += -log »

Used in some of the earliest work
Bengio 2013, not common now

Linear assignment for routing
Used in various papers like Clark 22

[Fedus et al 2022]

Top-K Routing in Detall

Gating This is the
N 1 / t-th token in layer / DeepSeek router
hi = Z (gi,t FEN; (ui)) + ui, (Grok does this too)

i=1
Sitr Sit € Topk({'s],tll <] < N}I K)/

S 0, otherwise,

Mixtral and DBRX

softmaxes after the
T

si¢+ = Softmax; (ui eg) , TopK

T \ the centroid of the i-th expert in layer /

Gates selected by a logistic regressor (Dai et al 2024]

Recent variations in DeepSeek and Qwen

Output Hidden

(a) Conventional Top-2 Routing == (b) + Fine-grained Expert Segmentation s (c) + Shared Expert Isolation
(DeepSeekMOoE)

Smaller, larger number of experts + a few shared experts that are always on.

Figure 2 | llustration of DeepSeekMoE. Subfigure (a) showcases an MoE layer with the con-
ventional top-2 routing strategy. Subfigure (b) illustrates the fine-grained expert segmentation
strategy. Subsequently, subfigure (c) demonstrates the integration of the shared expert isolation
strategy, constituting the complete DeepSeekMoE architecture. It is noteworthy that across these
three architectures, the number of expert parameters and computational costs remain constant.

DeepSeek v2 Architecture

|
(] Routed Expert |

D Shared Expert

Transformer Block xL

|
|
1
|
| P |
l :
: [Feed-Forward Network]: |
[}
! 1
: I :
! |
: RMS Norm !
i :
| - I 7=t = g I [A oy P e e L e L s i s L e T s]
: i o LU e ol s S K IR DO, T £ ST S A S L PN PN N S O
I AL Cached During Inference
! Attention e _
! Bt Output Hidden u,[OOQO -~ O0O00)
| | A ~ hi
: I T [Multi-Head Attention]
| RMS Norm] : 1
| : {lafc ot} {eE s KTy
| |

OO ~OQ)]1atent c? Latent cfV

|
|
|
|
|
|
Iimtsaeglir o saphupt s | Foplior 4 arugLuplan d] | co
|
|
|
|
I
I
I
|
I
I
I
|
|

Input Hidden b, (O O00 - - OO0O0)

Source: DeepSeek v2 Technical Report

Ablation Study from the DeepSeekMoE paper

I 0 shared expert + 2 out of 16 routed experts (GShard)

= 1 shared expert + 1 out of 15 routed experts (+ shared expert isolation)

I 1 shared expert + 3 out of 31 routed experts (+ fine-grained expert segmentation)
I 1 shared expert + 7 out of 63 routed experts (+ finer expert segmentation)

-
-

3
c 1.0
©
£
209
)
o
3
so08
©
£
6 0.7
=
0.6
0.5 o ;
HellaSwag PIQA ARC-easy ARC-challenge TriviaQA NaturalQuestions
Metrics

Figure 3 | Ablation studies for DeepSeekMoE. The performance is normalized by the best perfor-
mance for clarity in presentation. All compared models have the same number of parameters
and activated parameters. We can find that fine-grained expert segmentation and shared expert
isolation both contribute to stronger overall performance.

More experts, shared experts all seem to generally help

How to Train MoEs ?

Major Challenge: Need Sparsity for Training-time Efficiency BUT Sparse Gating
Decisions are not Differentiable !

Solutions ?

1. Reinforcement Learning to optimize Gating Policies.
2. Stochastic Perturbations
3. Heuristic “Balancing” Losses

RL for MoEs

RL via REINFORCE does work, but not so much better that it’s a clear win

3.2]j: “-o\. S-BASE g .“‘* RL-R = :*,. 1 Hash Felna Comparisons
s sw..*‘o:'“\ —’-‘*\q\ TL Tl B RS
ieaoicd. *\“zs‘\ el Talwt, & o e ety) P R L Y
2.6 e o> e = > N~ T { s N e | T T e SSg=_SNosoS=a
[:”.'..'. s ..." . .-* *‘~ “‘\‘\‘ L . ‘\“ ‘\'\‘ -y ~~~~ ‘~\.~~-.
2.4 ~e 3‘,.%:6*. -) L ;~_“’:~. - *"*15‘ ";~\~: B TR eT 11T
1.38 .\ -~ \..\ o \. s.‘ = .Q‘::‘ ™
* ~e e 0~: .h-."."‘ Y o .~‘~O ..-.-'.".~O o T il --~“~. \:===‘
. e -0 T -a . Q:\;_ s
20_ .*‘~...’ _ .‘.'\l_. " .-\t_' \:::::_
T T T T T T T 1 T T T T T 1 T T T 0 il | T T T
1248 32 128 512 12 48 32 128 512 1 2 48 32 128 512 12 438 32 128 512
Expert Count Expert Count Expert Count Expert Count

(REINFORCE baseline approach, Clark et al 2020)

RL is the ‘right solution’ but gradient variances and complexity
means it’s not widely used

Stochastic Approximations

G(z) = Softmax(KeepTopK (H(x),k))
H(z); = (x - Wy); + StandardNormal() - Softplus((z - Whoise)i)

V; if v; is in the top k£ elements of v.
KeepTopK (v,k); =< ° L
pTopK (v, k); {—oo otherwise.
From Shazeer et al 2017 - routing decisions are stochastic with gaussian perturbations.

1. This naturally leads to experts that are a bit more robust.
2. The softmax means that the model learns how to rank K experts

Stochastic Approximations

if is_training:

router_logits += mtf.random-uniform(shape=router.logits.shape, minval=1-eps, maxval=1+eps)

router_logits = mtf.to_float32(router_logits)

router_probs = mtf.softmax(router_logits, axis=-1)

Stochastic jitter in Fedus et al 2022. This does a uniform multiplicative perturbation for the
same goal of getting less brittle experts. This was later removed in Zoph et al 2022

Method Fraction Stable Quality (1)
Baseline 4/6 -1.755 +£0.02
Input jitter (10~2) 3/3 -1.777 £0.03

Dropout (0.1) 3/3 -1.822 +0.11

Heuristics Balancing Losses

Another key issue - systems efficiency requires that we use experts evenly..

For each Switch layer, this auxiliary loss is added to the total model loss during training.
Given N experts indexed by ¢ = 1 to N and a batch B with T tokens, the auxiliary loss is
computed as the scaled dot-product between vectors f and P,

N
IOSSZ(I'N'Zfi-Pz' (4)
i=1
where f; is the fraction of tokens dispatched to expert i,
1 ;
fi=7 él{argmax p(z) = i} (5)
xr

and P; is the fraction of the router probability allocated for expert 7, 2

zEB

From the Switch Transformer [Fedus et al 2022]

The derivative with respect to p;(x) is 6;—1;’2 Largmax p(x)=i>

so more frequent use = stronger downweighting

Example from DeepSeek

Per-expert balancing - same as the switch transformer

=
Lexppal = 11 Z fiPi, (12)
N,lle
fi= = ; 1 (Token ¢ selects Expert i), (13)
1 T
pP; = ? Z Sit (14)

Per-device balancing - the objective above, but aggregated by device.

D
LpeyBal = a2 Z fi’P,{/ (15)

i=1
g, A s
i =em 2 (16)

ng:,'

P{ = Z Pp;, 17)

je&i

Training MoE — the System Architecture

MoEs parallelize nicely - Each FFN
canfitin a device

=N MoE Transfomer Encoder
with device placement

Encoder Encoder
output (shard 1) output (shard E)
~ B

/" Add & Norm /! Add & Norm N
T = \ (e \

Feed Forward
FFN

Feed Forward
FFN

| ,

H

— Add & Norm —> Add & Norm
I I
Multi-Head Multi-Head
Attention Attention
(N/2)x (N/2)x
— Add & Norm Add & Norm

Al1-to-All Combine

Model-parallel FFNE
MoE 3
- All-to-All Dispatch_
Gating = ating
— Add & Norm P — Add 8 Norm
Multi-Head Devices Multif Head
Attention 1..E Attegtion
Device 1 / N Device £/

Input embeddings + |
Positional embeddings
(shard E)

Input embeddings +
Positional embeddings
(shard 1)

Data
Parallelism

Enables additional kinds of parallelism

How the model weights are split over cores

Model
Parallelism

Model and Data
Parallelism

Expert and Data
Parallelism

Expert, Model and Data
Parallelism

...........................

...........................

How the data is split over cores

Data Model Model and Data Expert and Data
Parallelism Parallelism Parallelism Parallelism
D00 O N
BHEHOH 5
E E] E [:] A E 4

Expert, Model and Data
Parallelism

Training MoE — the System Architecture

MoE routing allows for parallelism, but also some complexities

(A) Batched Matrix Multiplication (B) Block Diagonal Matrix Multiplication (C) Block Sparse Matrix Multiplication
Compute a set of independent matrix multiplications of ! Expert computation can equivalently be computed using block diagonal matrix We can enable load imbalanced routing and variable sized experts by
the same size in parallel. products with equal sized blocks along the diagonal. expressing expert computation as block sparse matrix muitiplication.

expert_capacity

I
|
) . I]
hidden_size ffn_hidden_size ! T ! T
i |
1 1
8 | Expert-0 | = : Expert-0 ! Expert-0
1 1
I 1
| 1
I i
I I
8 | Expert-1 | 2 : $ | Expert-1 | B2 - =====g % =
: 4 Expert-1
[oottt 1 BT
i |
I I
8 | Expert-2 | = l Expert-2 :
‘ ' Expert-2

Modern libraries like MegaBlocks (used in many open MoEs) use smarter sparse MMs

Additional Randomness from MoE models

There was speculation that GPT-4’s stochasticity was due to MoE..

Why would a MoE have additional randomness?

(4) Un-Permutation
Un-permute the results and scale each by

(1) Routing
Assign token feature vectors to experts

(3) Computation
Compute the expert layers for the set of

(2) Permutation
, Group tokens by expert. Drop tokens that

1 1
based on probabilities. : exceed expert capacity. : tokens they were assigned. : its expert probability.
hidden_size : capacity_factor=1 : - :
-------------------- 1 x mmmemmemmmemmeenaaan 1
T N DrOWnESRREEE — . IBE. {,......,,......,_,,_: 1
e I (unused) I =4 ' 1
the’ > S s iaiaivivie bt inianai 1 | 1
» “quick” ! !
S “brown” : = : — : = Expert-1(“the”)
] “fox" \ 3 1 m 1 o Expert-0(“quick”)
- . = T T Mo T TTTTTh I :’ """""""""" 1 ("]
jl.{mPEd : 2 ________ the - > I 8] ! > Expert-2(‘brown’) | __ -
over” i BN, O N__—] jumped” | =3 E] | Expert-0(“fox")
1 o 1 - 1 v Expert-1("‘jumped”)
* 1 3 1 L J 1 0
1 1 — 1
- I I m
Expert Indices] T T = e |
L TN O\ e guicks et 1 |
— [T2]e]2]]2]— “fox" T 5| £
L O S e e s SR 1 Bl | Eweameerestean 1
Probabilities ! = !
I 1 1
—> [sefaeforfar]sefzs] | 4 []
1 1

|

Token dropping from routing happens at a batch level - this means that
other people’s queries can drop your token!

~ ®

=)

Training Loss
&

Now s

0

2500

Issues with MoEs — Training Stability

5000 7500 10000 12500 15000

Step

"Exponential functions have the property that a small input perturbation can lead to a large difference in
the output. As an example, consider inputting 10 logits to a softmax function with values of 128 and one logit
with a value 128.5. A roundoff error of 0.5 in bfloat16 will alter the softmax output by 36% and incorrectly

ma.ke all logits equal. The cal.culation goes from exp(O?—:r(?Eer)p(—O.S). ~ 0.14.2. to ‘?XP(J+§2XP(O) = 0.091.
This occurs because the max is subtracted from all logits (for numerical stability) in softmax operations and
the roundoff error changes the number from 128.5 to 128. This example was in bfloat16, but analogous

situations occur in f1loat 32 with larger logit values.

[Zoph 2022]

Solution: Use Float 32 just for the expert router (sometimes with an aux loss)

L.(z) = %Z log 3 e% 5)

Issues with MoEs — Fine-Tuning

Sparse MoEs can overfit on smaller fine-tuning data

SuperGLUE CB Task

IVIeTriC

Zoph et al solution - finetune non-MoE MLPs

SuperGLUE Score
8 8 ¥ & 8 2

®

Al Non MoE MoE Attention FFN
Parameters Being Updated

100.0
97.5
95.0
92.5
90.0
87.51
85.0

825

Sparse train_eval
Sparse validation_eval
Dense train_eval

Dense validation_eval

80.0

Step

DeepSeek solution - use lots of data 1.4M SFT

Training Data. For training the chat model, we conduct supervised fine-tuning (SFT) on our
in-house curated data, comprising 1.4M training examples. This dataset spans a broad range of
categories including math, code, writing, question answering, reasoning, summarization, and
more. The majority of our SFT training data is in English and Chinese, rendering the chat model
versatile and applicable in bilingual scenarios.

Additional Training Method for MoEs - Upcycling

Original Dense Block
Layer o Layer
Noron | moet Attention @ N MLP >
A A
_ Make E
||| MLP copies
copy weights copy weights copy weights ~—
MoE
\i \] A
Layer , Layer Router Weighted
Norm [P g y Norm [from scratch Sum
A

Upcycled MoE Block

&
E 75% - method .‘
8 ® Dense - .k.
Q ® Upcycling o ¢
< variant L] .S XL
= ® Base (J
Q L Q.
M 739% & arge PY
ﬁ ® XL °
o @
g 7171, IR — PPY |Large
=
g
.= 70% . °®
© @
3 68% Ho— 20 90088 Base
© 10! 102 103

) Extra Pretraining Time (TPU-core-days)

Upcycling example - MiniCPM

Uses the MiniCPM model (topk=2, 8 experts, ~ 4B active params).

Model | C-Eval CMMLU MMLU HumanEval MBPP GSMS8K MATH BBH
Llama2-34B - - 62.6 226 33.0* 422 6.24 441
Deepseek-MoE (16B) 40.6 425 45.0 26.8 39.2 18.8 43 -
Mistral-7B 46.12 4296 62.69 27.44 45.20 33.13 5.0 41.06
Gemma-7B 42.57 44.20 60.83 38.41 50.12 47.31 6.18 39.19
MiniCPM-2.4B 51.13 51.07 53.46 50.00 47.31 53.83 10.24 36.87
MiniCPM-MoE (13.6B) | 58.11 58.80 58.90 56.71 51.05 61.56 10.52 39.22

Table 6: Benchmark results of MiniCPM-MoE. T means evaluation results on the full set
of MBPP, instead of the hand-verified set (Austin et al., 2021). The evaluation results of
Llama2-34B and Qwen1.5-7B are taken from their technical reports.

Simple MoE, shows gains from the base model with ~ 520B tokens for training

Another Upcycling example — Qwen MoE

Qwen MoE - Initialized from the Qwen 1.8B model top-k=4, 60 experts w/ 4 shared.

Model #Parameters #(Activated) Parameters MMLU GSM8K HumanEval Multilingual MT-Bench
Mistral-7B 72 7.2 64.1 47.5 27.4 40.0 7.60
Qwen1.5-7B 77 ¥ 64.6 50.9 32.3

Gemma-7B 8.5 7.8 61.0 62.5 36.0 452 7.60
DeepSeekMoE 16B 16.4 2.8 45.0 18.8 26.8 - 6.93
Qwen1.5-MoE-A2.7B 14.3 2.7 62.5 61.5 34.2 40.8 2 7

Similar architecture / setup to DeepSeekMoE, but one of the first (confirmed) upcycling successes

A remarkable Reduction of 75% in Training resource !

Upcycling example (?) Mixtral

Some people think Mixtral may also be upcycled

Correlation between Mixtral-8x7B and Mistral-7B

0.8

0.6

Correlation

0.21

0.0-

20 40 60 80 100 120

Layer idx

... but since Mixtral is only open weights and not open training code, we don’t really know..

MoE Summary
e MoE take advantage of Sparsity — Not all inputs need the Full model
e Discrete Routing is Hard, but Top-K Heuristics seem to work

e Lots of Empirical Evidence has shown MoEs work, and are cost-effective

Quantization

Preliminaries: How Are Numbers Represented in Computers?

Different data types are represented by different numbers of bits:

e C(har: 8 bits, 1byte
e Int: 32 bits, 4 bytes

Common data types for training in machine learning:

e Floating point 32: 4 bytes We do not represent an
e BFloatl6: 2 bytes infinite set of values!

Datais organized by bytes and programs refer to data by address:

&‘Q 6’\‘\
P&

What is Quantization?

Quantization is the process of mapping a continuous signal (or a signal where values come
from alarge set)to a discretized signal (or one where values come from a smaller set)

I

-9,

i

YEEE EE

Quantized to 24-bit colors Quantized to 16-bit colors

Quantization error is the absolute value of the true value (e.g. in the continuous signal)

minus the quantized value

https://en.wikipedia.org/wiki/Color_guantization

https://en.wikipedia.org/wiki/Color_quantization

Quantization Motivation

Reduce Storage Required

Total Storage = Number of Parameters x Bit-width per Parameter

Reduce the FLOPs/Energy Required
For Addition: O(N) FLOPs for N-bit-width values
For Multiplication: O(N2) FLOPs for N-bit-width values

N-bit Integer

Unsigned Integer: [0, 2" -1]

8-bits [0 |1 |0|0|0|1|1T]0
X X X X X X X X
27 28 2% 24 2% 22 20 20 =70

Signed Integer: We designate a bit for negative (1) or positive (0)

8-bits |1 |T1T|0(0|0|1T|1]0 “Signed
magnitude
representation”

X X X X X X X
-1 26 25 24 23 22 21 20 =-70

N-bit Integer

Unsigned Integer: [0, 2" -1]

8-bits [0 |1 |0|0|0|1|1T]0
X X X X X X X X
27 28 2% 24 2% 22 20 20 =70

Signed Integer: We designate a bit for negative (1) or positive (0)

8bits | 1|01 (1|1 0[1]0 TWo's

X X X X X X X complement
297 96 95 924 93 92 91 20 =_7(Q representation”

Fixed-Point Numbers

We have a fixed number of bits allocated to the integer vs. fraction representation.

8-bits

Sign Integer Fraction

8-bits |1|1|/0[{0|0|1|1]0
X X X X X X X
-1 22 20 20 271 272 28 2% =-4.375

Floating-Point Numbers

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)

Value =(-1)si9n x (1+ Fraction) x 2 Exponent - Bias

e Computing 2 Exponent rather than the linear Exponent, allows increasing the range

of values we can represent!
o Dynamic Range: difference between the maximum and minimum value we can represent

e Biasis 28'-1. Subtracting the bias allows us to represent negative valuesin the
exponent.

Example of FP32

ojoj1j1}17/17/0/0j0)0J|17]0|0]0|0|0J0]0O]|0|0O]0O]0O|0O]|O

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)

e FExponent: 26+25+24+25=120
e Bias: 2871-1=127
e Fraction:22=0.25

Value =(-1)19" x (1+ Fraction) x 2 Exponent-Bias

Value=(-1)° x(1+0.25) x 2120-127=0.0097656..

Edge Cases of FP32

0

0|0

0

0

0

0

11]0/0/0]0]0|0

0

0

0

0

0

0

0/]0|0|0]|0]0]0]|O

Sign

8-bit Exponent

23-bit Fraction (“Mantissa”)

e Normal numbers: exponentisnotall 0
This is what we looked at on the prior slides

@)

e Subnormal numbers: exponentisall 0

@)

(@)
(@)
(@)

Equation is set to: value =(-1)$19"x Fraction x 21127
Value is 0 If exponentis all 0 and the fractionis O
Smallest positive subnormal value we can represent = 2723 x 2127

Largest positive subnormal value we can represent =(1-2723)x 21127

We cannot represent
infinitely small values!

Edge Cases of FP32

ojt{1j1j1y1y1}1j]17]0Jj17;0]0/0|/0|0|J0]jJ0]|0|0O]0O]|0O|O]|O

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)

e ExponentisallT
o Non-0 fractionis NaN(Not a Number)
o Ofractionis+infinity or - infinity depending on the sign bit

Floating-Point Number (IEEE 754 Specification)

0(0(1(1{0f1]{1]1]1|/0|1|/0[|0|0|0]|0

0/|0|0]|0]0]|0|0|0|0O]0O]O

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)
Exponent Fraction=0 | Fraction#0 Equation
001=0 O +0 subnormal (-1)sion x Fraction x 21-127

01n..FEn=1.254 mal

(-1)sion x (1 + Fraction) x 2Exponent-127

NaN

nort
FFi= 255 O :tINFO

subnormal values
| | | | | - | | |

normal values
| | |

I I 1 I] I] I
+0 2-149 (1-2-28) 2-126 2-126

Credits: MIT 6.5940 (Prof. Song Han)

| | |
(1+1-229)x2127

Other Floating-Point Representations

Recall that the storage size and computational cost for our model grows with the
number of bits per value. Can we use fewer bits to train or run inference?

Exponent bits Fraction bits Total
|IEEE 754 FP32 8 23 32
IEEE 754 FP16 5 10 16
Google Brain Float 16 8 7 16

FP16 — BF16: Goal is to increase the dynamic range. More stable training in practice.

Two Classical Quantization Methods

Original training: floating point weights and floating point computations

e K-means quantization: integer weights and floating point computations

e Linear quantization: integer weights and integer arithmetic

Examples of k-means clustering

e Clustering RGB vectors of pixels in images
e Compression of image file: N x 24 bits

o Store RGB values of cluster centers: K x 24 bits
o Store cluster index of each pixel: N x log K bits

Side Notes:

O(kn?) 1-D k-means algorithm via Dynamic Programming: https://pmc.ncbi.nim.nih.gov/articles/PMC5148156/
k-means is NP-hard: https://cseweb.ucsd.edu/~avattani/papers/kmeans hardness.pdf

k-means is NP-hard even for k=2: https://cseweb.ucsd.edu/~dasgupta/papers/kmeans.pdf

https://pmc.ncbi.nlm.nih.gov/articles/PMC5148156/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5148156/
https://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf
https://cseweb.ucsd.edu/~dasgupta/papers/kmeans.pdf

Method 1: K-Means Quantization

Approach during inference

1. Given our original full precision(e.qg. FP32)
weight matrix, we cluster the values

2. We store aindex of the cluster number
(integer) to the cluster centroid (floating point)

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Original FP32 Weights

2.09 |-0.98| 1.48 | 0.09
0.05 |-0.14 |-1.08 | 2.12
-0.91(192 | 0 |-1.03
1.87 | 0 | 153 | 149

Centroids

3: | 2.00

2: | 1.50

1: | 0.00

0: |-1.00

Method 1: K-Means Quantization

3. We perform computations by reconstructing the weight matrix, using the map

Original FP32 Weights Centroids Cluster Index (2-bits)
2.09 |-0.98| 1.48 | 0.09 3: | 2.00 3 0 | 2 | 1
0.05 |-0.14 |-1.08 | 2.12 2: | 1.50 1 1 0 3
-0911192 | 0 |-1.03 1: [0.00 0 3 1 0
1.87 0 | 1.53 | 1.49 0: |-1.00 3 1 2 2

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Method 1: K-Means Quantization

Analysis.
Let S be the size of the index. Let the original DxD weight matrix be in FP32.
Storage savings (reduced memory fetch):
(32 x D2)-(logy(S)x D2+ S x 32)
At D = 4, the savings are 64B - 20B = 44B(3.2x compression)

As S << D, we see larger savings
Note that there are no computation savings (computation is still FP32)

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Method 1: K-Means Quantization

Approach during fine-tuning/training the shared weights(centroid vector). We have the
same Sx1dimensional centroids vector as before.

1. We compute gradients with respect to the loss function for the centroids vector

dL/ de = SUM;IJ' dL/dWij, for Wi,j in centroid Ck

1. We use the gradient vector for the centroids to update the centroid vector

C@ = C-1rx(dL/dCM)

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Method 1: K-Means Quantization

Summarizing the overall procedure:

weights cluster index fine-tuned

(32 bit float) (2 bit uint) centroids centroids
3 0 2 1
m cluster 1 1 0 3
m m I:> 0 3 1 0
3 1 2 2

gradient

reduce

=

-0.01|-0.02 | -0.01 | 0.01

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Method 1: K-Means Quantization with Huffman Encodings

100000

220000
75000 165000
50000 110000
25000

Looking at the quantized weights and centroid indices for the last layer of an AlexNet (vision) model

Count

Count

55000
1

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Weight Index (32 Effective Weights)

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Sparse Matrix Location Index (Max Diff is 32)

Huffman codes(Van Leeuwen, 1976) use variable-length codewords to encode distributions. We
could get away with fewer bits for more frequent values! Results in >20%+ memory savings above!

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Summary of Deep Compression

Quantization: less bits per weight

Pruning: less number of weights S = N Huffman Encoding
/ @)
s TL NI IR __—————— ~ \ o (O S S S g e ~
e A [| Cluster the Weights | % \
' s) | L y 1 I ‘|
| — | 1)
| | Train Connectivity J ! I I} I o - o R
original | i same ! A | same | neode eS| 1 same
network 1 <z ! accuracy,, Generate Code Book laccuracy | - “/ |accuracy
| 1 _ | | !
E> : Prune Connections : E> I < g I E> (I N | E>
. 1 4 1 1 1
size | ~z I'reduction reduction | Ireduction
L (| , | with Code Book : 1)
I
! Train Weights | L <r ! N !
[e (e I e -
N ! : Retrain Code Book :
L s Sy S — - VoL]
\ /
~ '

o o o

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Deep Compression Results

Takeaways:

© Pruning + Quantization # Pruning Only <+ Quantization Only < SVD
e F[oreachmethod, aswe

) 0.5%
increase the 0.0% —o-
compression further, 2 o
accuracy decreases > 15%

g 2.0%
5 -25%
8 -3.0%
) < 35%

e Pruningand -4.0% : : ; ; :

S -4.5% f— : ’ : :
quantization work well 204 5% 8% 1% 14% 17% 20%
together vs. one of Model Size Ratio after Compression

them alone

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Recap: K-Means-based Weight Quantization

float

weights cluster index
(32-bit float) (2-bit int) centroids

3 0 2 1 |3

1 1 0 3 |2:

ol 3| 1] o |1

weights

31| 2| 2 |o]100

5 o ¢ quantized weights
During Computation In Storage « codebook (float)

* The weights are decompressed using a lookup table (i.e., codebook) during runtime inference.
* K-Means-based Weight Quantization only saves storage cost of a neural network model.
* All the computation and memory access are still floating-point.

Motivation for Linear Quantization

2.09]-0.98|1.48|0.09 3 0 2 1 3: . 0
0.05(-0.14}-1.08]2.12 1 1 0 3 | 2: |1.50 -2
- -1)X1.07
-0.91]1.92| 0 |-1.03] 0 3 1 0 | 1: |0.00 1
1.87| 0 (1.53]1.49 3 1 2 2 | 0: |-1.00 0
K-Means-based Linear
Quantization Quantization
: : Integer Weights;
Storage Flo\ell\’;g;ghli’somt Floating-Point Integer Weights
9 Codebook
Computation FoatingsReint ploatingzroint Integer Arithmetic

Arithmetic Arithmetic

Method 2: Linear Quantization

An affine mapping of integers to real numbers

weights quantized weights zero point scale reconstructed weights
(32-bit float) (2-bit signed int) (2-bit signed int) (382-bit float) (32-bit float)

- 1) X 1.07
\ /

we will learn how to
determine these parameters quantization error

-0.05| 0.09 | 0.41 | 0.09

0.05 |-0.14(-0.017|-0.02

0.16 |-0.22(0 |0.04

-0.27| 0 |0.46(0.42

MIT 6.5940 Fall 2023 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877

Method 2: Linear Quantization
An affine mapping of integers to real numbers r = S(¢g - Z)

weights quantized weights zero point scale
(32-bit float) (2-bit signed int) (2-bit signed int) (32-bit float)

- 1) X 1.07

= &) X 8

Floating-point Integer Integer Floating-point

* quantization parameter ¢ quantization parameter

* allow real number r=0 be
exactly representable by a

quantized integer Z
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

MIT 6.5940 Fall 2023 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877

Method 2: Linear Quantization

Knowns:
Timin 0 Fmax
® Weknow r,;, and r,,, from our original y Floating-point | >
. . range |
weight matrix
® Weknow ¢,,;,and ¢, if we are quantizing >< S
to bits (N), the range is (-2N"through 2NV-1-1) + Floating-point
q K Scale
Given all those values, we can solve for Sand Z 0 7 0"

(two equations, two unknowns): Zero point

Fmin = S (CImin - Z)

1. Vimax — S(Qmax - Z) l Bit Width Qmin QOmax
2. Vin = S(Qmin - Z) [2 -2 1

I

Z= Qmin — ULl 2 = 2
~ Tmax = "min . 2 i
|:> S = | N _ON-1 ON-1_1

Gmax — 9min r

Z = round (qmin - %)

Linear Quantized Matrix Multiplication

Can we use integer computation instead of floating point with our linearly quantized
weights?

To compute matmul Y = WX
where Y = Sy (qy - Zy), W = Sw (qQw - Zw), X = Sx (qx - Zx)

Rearranging the terms:
earranging the te v — WX

SW SX Precompute
|:> Iy =[— (lawax — Zwax — ZxQw + ZwZx|) HZy
Y

N-bit Integer Multiplication N-bit Integer
32-bit Integer Addition/Subtraction Addition

Fixed-point Multiplication
S SoSe: L
Xis always in the interval (0, 1). |:> WX =2 "M,, where M, € [0.5,1)
SY SY 4

Bit Shift

Empirically, the scale

Count

Linear Quantization is an affine mapping of integers to real numbers r = S(g — Z2)

Linear Quantized Matrix Multiplication

* Consider the following matrix multiplication.

1.0 led s

Y = WX

0.8

0.6 4

0.4 4

0.2 A

0.0 <

Weight Value

S S Precompute
=== B — 7. qw + ZwZd) HZ
qy = g Awdx — 4wlx — £xQw T 4w Y
Y
Rescale to N-bit Integer Multiplication N-bit Integer
N-bit Integer 32-bit Integer Addition/Subtraction Addition
— 09
Zw = 0°

-0.10 -0.05 000 0.05 0.10

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Symmetric Linear Quantization

Zero point Z = 0 and Symmetric floating-point range

Fmin 0 Fmax = | r|mzv(0 | r |max

Floating-point
'3 _—rangl'_e I < r I >

i S
Floating-point

q Scale q
% %
9min Z dmax 9min Z — O 9max
Zero point
Bit Width Qmin max

& -2 1

3 -4 3

4 -8 T

N ~ON-1 ON-1-1

Symmetric Linear Quantization
Full range mode

Fmin 0 "'max - | r | max 0 | 4 |max
Floating-point I 5 I .
r range r
‘ # s s
% " Floating-point
q ’ Scale q 4 J
— o — — i —-
Gmin Z Gmax Ymin Z — O Gmax
Zero point Foin = S (qmin 4
K "max ~ "min | | | I
_— - =
— min max max
Bit Width| qmin Olmax Tmax = 4min S = = =
2 e 1 Qg =24 9min 2
3 -4 3
4 -8 7
N -2N-1 2N-1-1

Linear Quantized Fully-Connected Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(g — Z)

* Consider the following matrix multiplication, when Zw=0.

Y = WX
3 SW SX > ZPrecompl%e - s
qy = Awdx — Zwlx — ZxQw + Zw4x)) H 4y
Sy
I \ |
Rescale to N-bit Integer Multiplication N-bit Integer
N-bit Integer 32-bit Integer Addition/Subtracfion Addition

Jy =

Linear Quantized Fully-Connected Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(g — 2)

* So far, we ignore bias. Now we consider the following fully-connected layer with bias.

Y=WX+b

Sy (QY - ZY) = Sw (QW - Zw) - 5x ((lx - ZX) + Sp <(Ib - Zb)
| Zg=0
Sy ((lY = ZY) = Swidx (qqu = ZXqW) + Sy, (Qb = Zb)
| Z,=0, S, =SwS

Sy (QY = ZY) = Swix (qux — ZxQw + Qb)

Linear Quantized Fully-Connected Layer
Linear Quantization is an affine mapping of integers to real numbers r = S(g - 2)

* So far, we ignore bias. Now we consider the following fully-connected layer with bias.

Y=WX+b
Zw=0 { Z,=0, § =SwSk

Sy (QY = ZY) = Swdx (QW‘IX — ZxQw + (lb)

|
S S Precompute
Qy = ‘;’ > (quX +qp — Zx‘lw) +Zy
Y
S S l Qpias = b — ZXqW
qy = LA, (QWQX L3 qbias) +Zy

Sy

Linear Quantized Fully-Connected Layer
Linear Quantization is an affine mapping of integers to real numbers r = S(g — 2)

* So far, we ignore bias. Now we consider the following fully-connected layer with bias.

Y=WX+b
Zw =0
Z, =0, S = SwSk
Qpias = Db — ZxAw

_[Swsx "
Jy = Y
Sy
Rescale to N-bit Int Mult. N-bit Int
N-bit Int 32-bit Int Add. Add

Note: both q and q,, .. are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(g — 2)

* Consider the following convolution layer.

Y =Conv(W,X)+b
Qpias = 9b — COnV (qW’ ZX)

Swd
WX
qy = Conv ((IWa (lx) + Qpias]) HLy
Sy
Rescale to N-bit Int Mult. N-bit Int
N-bit Int 32-bit Int Add. Add

Note: both q,, and q,,,, are 32 bits.

Linear Quantized Convolution Layer

Linear Quantization is an affine mapping of integers to real numbers r = S(g — 2)

* Consider the following convolution layer.
Y=Conv(W,X)+b

zero point int int, quantized outputs
>
Zy . Qw

scale factor

SwSk!Sy

Qpias = db —[Conv (aw- ZX)] quantized bias

Swd
Jy :E FonV ((lw» (lX)J‘F Dpias
Y

) +

Rescale to N-bit Int Mult.
N-bit Int 32-bit Int Add.

Note: both q,, and q,, ,, are 32 bits.

Ly

quantized inputs [e[VENirZ=Te RWT=TTe] 165

N-bit Int Ix dw

Add

INT8 Linear Quantization Results
An affine mapping of integers to real numbers r = S(¢g — 2)

Neural Network ResNet-50 Inception-V3
Floating-point 76.4% 78.4%
Accuracy
8-bit Integer-
quantized 74.9% 75.4%
Acurracy

T
70 | -] ==
[|
9 .
= 60f i -
< m
Qo
o S0 m - —
B] Float
. m 8-bit
40 = | | | | I
5 15 30 60 120

Latency (ms)

Latency-vs-accuracy tradeoff of float vs. integer-only
MobileNets on ImageNet using Snapdragon 835 big cores.

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Applications to Transformers

160 \ 43
~ N
S * 182
< 39.6 eX
8 . o)
% 80 N 692 395
2 c
3
p=

y
0 35

Transformer Lite Transformer +Quant (8 bits) +Quant (8 bits)
(Ours) +Pruning

[2004.11886] Lite Transformer with Long-Short Range Attention, ICLR2020

https://arxiv.org/abs/2004.11886

References for Neural Networks Quantization

1. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey
[Deng et al., IEEE 2020]

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]
Deep Compression [Han et al., ICLR 2016]
Neural Network Distiller: https://intellabs.qgithub.io/distiller/algo quantization.html

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
[Jacob et al., CVPR 2018]

6. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations
[Courbariaux et al., NeurlPS 2015]

7. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations
Constrained to +1 or —1. [Courbariaux et al., Arxiv 2016]

8. XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari et al.,
ECCV 2016]

9. Ternary Weight Networks [Li et al., Arxiv 2016]
10.Trained Ternary Quantization [Zhu et al., ICLR 2017]

O g (C0- 19

MIT 6.5940 Fall 2024 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877

More References for Neural Networks Quantization

1. Deep Compression [Han et al., ICLR 2016]
Neural Network Distiller: https://intellabs.qgithub.io/distiller/algo quantization.html

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR
2018]

Data-Free Quantization Through Weight Equalization and Bias Correction [Markus et al., ICCV 2019]
Post-Training 4-Bit Quantization of Convolution Networks for Rapid-Deployment [Banner et al., NeurlPS 2019]
8-bit Inference with TensorRT [Szymon Migacz, 2017]

Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper [Raghuraman Krishnamoorthi, arXiv
2018]

8. Neural Networks for Machine Learning [Hinton et al., Coursera Video Lecture, 2012]
9. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation [Bengio, arXiv 2013]

10.Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or —1.
[Courbariaux et al., Arxiv 2016]

11.DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients [Zhou et al., arXiv
2016]

12.PACT: Parameterized Clipping Activation for Quantized Neural Networks [Choi et al., arXiv 2018]

13.WRPN: Wide Reduced-Precision Networks [Mishra et al., ICLR 2018]

14.Towards Accurate Binary Convolutional Neural Network [Lin et al., NeurlPS 2017]

15.Incremental Network Quantization: Towards Lossless CNNs with Low-precision Weights [Zhou et al., ICLR 2017]
16.HAQ: Hardware-Aware Automated Quantization with Mixed Precision [Wang et al., CVPR 2019]

A

w

e BRI

MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877

