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Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.

● Stanford CS336: Language Modeling from Scratch, Spring 2024
○ by Profs. Tatsunori Hashimoto,  Percy Liang, https://stanford-cs336.github.io/spring2024/

● Stanford CS229S: Systems for Machine Learning, Fall 2023
by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/

● CMU 11-667: Large Language Models: Methods and Applications, Fall 2024
by Profs. Chenyan Xiong and Daphne Ippolito,  https://cmu-llms.org

● CMU 11-711: Advanced Natural Language Processing (ANLP), Spring 2024
by Prof. Graham Neubig, https://phontron.com/class/anlp2024/lectures/

● UPenn CIS7000: Large Language Models, Fall 2024
by Prof. Mayur Naik, https://llm-class.github.io/schedule.html

● UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024
by Prof. Wenhu Chen, https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/

● MIT 6.5940: TinyML and Efficient Deep Learning Computing, Fall 2024
by Prof. Song Han, https://hanlab.mit.edu/courses/2024-fall-65940

● UMD CMSC848K: Multimodal Foundation Models, Fall 2024
by Prof. Jia-Bin Huang, https://jbhuang0604.github.io/teaching/CMSC848K/

● NeurIPS 2024 Invited Talk: “Systems for Foundation Models, and Foundation Models for Systems,”
by Prof. Chris Re, Stanford.

● CUHK-SZ CSC6203: Large Language Models, Fall 2024
by Prof. Benyou Wang, https://llm-course.github.io; https://github.com/FreedomIntelligence/CSC6203-LLM

Acknowledgements

2

https://stanford-cs336.github.io/spring2024/
https://cs229s.stanford.edu/fall2023/
https://cmu-llms.org/
https://phontron.com/class/anlp2024/lectures/
https://llm-class.github.io/schedule.html
https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
https://jbhuang0604.github.io/teaching/CMSC848K/
https://llm-course.github.io/
https://github.com/FreedomIntelligence/CSC6203-LLM


Case studies on some Recent 
Transformers



BERT: Bidirectional Encoder Representations from Transformers

Introduced by Google in 2018, it learned 
embeddings of text for use in downstream 
tasks. It’s major changes are:

● Segment embeddings in addition
to token embeddings and position 
embeddings. All are learned!

● Encoder-only instead of encoder-
decoder

● Bidirectional instead of unidirectional
● Two simultaneous loss functions

with masked language modeling and 
next sentence prediction



BERT: Masked Language Modeling

First, sample 15% of tokens in a 
sample.

Replace token with:

● [MASK] ~ 80%
● Random word token ~ 10%
● Not replaced ~ 10%

Pass sentence through the encoder and 
try to predict [MASK] with a simple 
linear layer + softmax!



BERT: Next Sentence Prediction

Try to determine if one sentence follows 
another with simple binary classification.
All embedding are learned!  (unlike original 
Transformer).

Later works found this to not be useful …



Vision Transformer (ViT)

(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

● Applies vanilla transformer encoder to image classification
● Convert images to “sequences”:

○ Images are spliced into smaller regions
○ Regions are flattened and treated as a sequence



The Llama Family of Transformers from Meta

“Open-source”** Autoregressive LLM first 
released by Meta in Feb 2023. (Multiple 
generations since then.) 
Changes include:

● Decoder-only instead of encoder-decoder
● RMSNorm instead of LayerNorm
● SwiGLU activation instead of GeLU
● Use Grouped Query Attention (GQA)
● Rotary positional embeddings instead of 

absolute positional embeddings

** Here, “open source” means 
(1) open-source inference codes + (2) open-weights BUT not open-datasets NOR open data-cleansing/ 

tuning procedural details or scripts NOR codes for training the model. 
Contrast this with the “Open EVERTHING” philosophy of  the OMLo family from Ai2 https://allenai.org/olmo



RMS Normalization in Llama

In LayerNorm, we re-center (subtracting from mean) and re-scale (divide by standard deviation)
across (sequence length, embedding_dim) dimensions.

Zhang et al. propose that only re-scaling matters. This saves a small amount of compute
by not needed to re-center.

LayerNorm

RMSNorm

Linear Layer



Swish-Gated Linear Unit (SwiGLU)

Swish(x) = sigmoid(β*x), β is hyperparam

GLU(x) = x*sigmoid(Wx+b); W,b is learned

SwiGLU(x) = x * sigmoid(β * x) + 
(1 - sigmoid(β * x)) * (Wx + b)

Smoother than ReLU, non-monotonic, 



Grouped Query Attention (GQA)
Multi-Head Attention Multi-Query Attention Grouped Query Attention

GQA interpolates between MHA and MQA. It reduces Memory Bandwidth overhead during inference time while
avoiding excessive loss in accuracy as fewer K and V matrices are loaded into the Decoder (KV-cache in GPU RAM) 



“Growing Pains” of Transformers



What would we like to fix about the Transformer?

The Demand of Getting Bigger Models, with Longer Context Length to provide more 
capabilities and better accuracies (Emergent Behaviors, Scaling Laws of LLM) without 
getting slower (especially when serving the models in real-time):

● But bigger, and longer-context models demand more Compute and Memory

Quadratic compute in self-attention:

● Computing all pairs of interactions means our computation grows quadratically with the 
sequence length!

● For recurrent models, it only grew linearly!

● Large Memory and GPU Memory Bandwidth (I/O) Requirements for large K, Q, V matrices, 
especially during inference times 1

Need More Robust Position representations: 

● Absolute Positional Encoding vs. Relative Positional Encoding

● How to generalize to Context-length change ? [During Training != during Inference]



Efficient Transformers

15(Tay et al., 2020): Efficient Transformers: A Survey



Efficient Architecture Designs for LLMs

16
Source: Zhongwei Wan et al., May 2024): Efficient Large Language Models: A Survey, Trans. On MLR.



Slides from video of
Jia-Bin Huang

University of Maryland College Park

https://www.youtube.com/watch?v=SMBkImDWOyQ

Positional Encoding



The Llama Family of Transformers from Meta

“Open-sourced”** Autoregressive LLM first 
released by Meta in Feb 2023. (Multiple 
generations since then.) 
Changes include:

● Decoder-only instead of encoder-decoder
● RMSNorm instead of LayerNorm
● SwiGLU activation instead of GeLU
● Use Grouped Query Attention (GQA)
● Rotary positional embeddings instead of 

absolute positional embeddings

** Here, “open sourced” means 
(1) open-source inference codes + (2) open-weights BUT not open-datasets NOR open data-cleansing/ 

tuning procedural details or scripts NOR codes for training the model. 
Contrast this with the “Open EVERTHING” philosophy of  the OMLo family from Ai2 https://allenai.org/olmo



Embedded
Tokens
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Variants of Positional encodings to tackle Context-length Generalization
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Absolute Positional Encoding schemes: 
e.g. Sinusoidal positional encoding, Learned (in BERT)
But cannot generalize to sequence of unseen context-
length: Training length != Inferencing length

Relative positional encoding: e.g. T5 bias, and many 
more…



Challenge for Positional Encoding Schemes

► How to generalize the model when 

Context-length during Training << (unseen) Context-length during 
Inference

while enabling high inference speed ! 

► Many different schemes proposed, still active research:
► ALiBi, KERPLE, RoPE, LongRoPE, NoPE, CoPE, YaRN, FIRE, etc..
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Challenge for Positional Encoding Schemes

• How to generalize the model when 
Context-length during Training << (unseen) Context-length during Inference

while enabling high inference speed ! 

• Many different schemes proposed, still active research:
• ALiBi, KERPLE, RoPE, LongRoPE, NoPE, CoPE, YaRN, FIRE, etc..



Rotary Position Embedding (RoPE)
So far, we have seen two kinds of position embeddings: 

● Absolute Positional Encoding: e.g. Sinusoidal [Vaswani et al. 2017] and learned (BERT) ;
● Relative Positional Encoding: e.g. T5-bias, 

BUT they require “Known” target context length !

Instead of adding extra numbers, RoPE rotates embeddings based on their position so that the relative position of tokens 
can be considered in the attention calculations rather than their absolute positions. The angles between embedding 
vectors maintain the same proportional relationship as the distance between tokens in the sequence.
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Rotary Positional Embeddings, 2021
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Rotary Positional Embeddings, 2021
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Rotary Positional Embeddings
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Rotary Positional Embeddings
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Rotary Positional Embeddings
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Rotary Positional Embeddings
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I walkmy dog every day, enjoying the fresh air and the peaceful surroundings. As we stroll through the neighborhood, my dog 
excitedly sniffs every tree and patch of grass, wagging its tail with delight. The routine has become a relaxing part of my day, offering a 
moment to clear my mind while my dog gets some exercise. Whether it's sunny or overcast, these walks are a cherished time for both 
of us to unwind and explore.



Rotary Positional Embeddings

Absolute Positional Embeddings
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Poor length generalization!



Position Interpolation, June 2023



Position Interpolation, June 2023



Rotary Positional Embeddings
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YaRN
Yet another RoPE extensioN method

YaRN, Nov 2023



LongRoPE

LongRoPE, Feb 2024



LongRoPE, Feb 2024



LongRoPE, Feb 2024
Passkey retrieval accuracy



Limitations (PI, YaRN, LongRoPE)

► Require known target context length.

► Often require finetuning

► Works only with RoPE (Llama-2, Llama-3, PaLM)
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T5 bias
Relative positional encoding: e.g. T5 bias, and many 
more…

Another Class of Methods for Long Context Extension: 

Just “Change” the Attention Matrix 
by adding Relative Positional Bias (the B matrix)
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Functional Interpolation for Relative position Embeddings, 2024
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Amplifying the differences among local 
positions
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Functional Interpolation for Relative position Embeddings, 2024



Functional Interpolation for Relative position Embeddings, 2024

Visualization of FIRE learned position 
biases



► Transformer: need input position information
► Absolute positional encoding

► Just concatenate the position t
► BUT, really hard to learn
► THEREFORE, sinusoidal
► BUT, this seems arbitrary!
► THEREFORE, we can DIRECTLY learn the positional encoding through 

optimization, e.g. as in BERT
► BUT, this requires known fixed length. Cannot work at all for L+1 position.
► BUT, what we really want is relative position. Not absolute
► Every day I walk my dog

► I walk my dog every day

Development Summary of 
Positional Encoding Schemes



► Relative positional encoding
► Example: T5 bias, learnable bias for query-key
► BUT, SLOW, challenging to do KV cache
► THEREFORE, Rotary position encoding
► BUT, poor length generalization
► THEREFORE, 

► Positional interpolation
► YaRN
► LongRoPE

https://www.reddit.com/r/LocalLLaMA/comments/1axhhs6/longrope_extending_ll
m_context_window_beyond_2/

► BUT, this requires finetuning and know the target sequence length
► THEREFORE, revisit attention bias from T5

► AliBi
► Kerple
► Sandwich

► BUT, this makes it hard to attend to long-range dependency
► So FIRE

Development Summary of Positional Encoding Schemes (cont’d)

https://www.reddit.com/r/LocalLLaMA/comments/1axhhs6/longrope_extending_llm_context_window_beyond_2/


Yi Lu et al, https://arxiv.org/pdf/2409.12181

Video by: Prof. Alexander (Sasha) Rush of Cornell
https://www.youtube.com/watch?v=dc4chADushM

A Controlled Study on Long Context Extension 
and Generalization in LLMs 

https://arxiv.org/pdf/2409.12181
https://www.youtube.com/watch?v=dc4chADushM


References for Positional Encoding
1. Attention is All You Need https://arxiv.org/pdf/1706.03762.pdf
2. RoPE (aka RoFormer) https://arxiv.org/pdf/2104.09864.pdf
3. ALiBi https://arxiv.org/pdf/2108.12409.pdf
4. Investigation on what positional embeddings learn 

https://aclanthology.org/2020.emnlp-main.555.pdf
5. YaRN: Efficient Context Window Extension of Large Language Models 

https://arxiv.org/pdf/2309.00071
6. Linear RoPE vs. NTK vs. YaRN vs. CoPE, July 2024 

https://medium.com/@zaiinn440/linear-rope-vs-ntk-vs-yarn-vs-cope-
d33587ddfd35

7. FIRE: Functional Interpolation for Relative Positions improve Long Context 
Transformers https://arxiv.org/pdf/2310.04418

8. Round and Round We Go! What Makes Rotary Positional Encodings 
Useful ? Oct 2024, https://arxiv.org/pdf/2410.06205
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Work on Improving on Quadratic Self-Attention Cost
● Much recent work has gone into the question, Can we build models like Transformers 

without paying the 𝑂(N2) all-pairs self-attention cost?
● For example, (Wang et al., 2000): Linformer : Self-Attention with Linear Complexity
Key idea: The Attention Matrix can be approximated by a Low-Rank matrix 

=> Map the sequence length dimension to a lower-dimensional space for values, keys.



Work on Improving on Quadratic Self-Attention Cost

● Much recent work has gone into the question, Can we build models like Transformers 
without paying the 𝑂(N2) all-pairs self-attention cost?

● For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local windows, 
looking at everything, and random interactions.



Another Sparse (but fixed) Attention Pattern: Longformer



More Efficient Attention via Sharing:
Group-Query Attention
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KV Cache during Inference time in Transformers 

During interference time, K and V values computed from previous tokens in the windows are cached inside the GPU to 
avoid unnecessary re-computation. However, since memory requirement for the K and V matrices grows linearly with 
Context-length, KV caching creates a memory bottleneck within the GPU in practice.



More Efficient Attention via Sharing: 

Multi-Head Attention Multi-Query Attention Grouped Query Attention

GQA interpolates between MHA and MQA. It reduces Memory Bandwidth overhead during inference time while
avoiding excessive loss in accuracy as fewer K and V matrices are loaded into the Decoder (KV-cache in GPU RAM) 



Uptraining for MQA

1. Key and Value projection matrices (K, V) are mean pooled into a single 
projection matrix

1. Works better than selecting one key/ value projection matrix

2. Or randomly initializing the Projection Matrix

2. The pooled projection matrix is then trained for α = 5% of its original 
training steps
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Group Query Attention (GQA) 70

1. GQA is the natural interpolation of MQA and MHA: heads are divided into G 
groups, with each group sharing a single key and value head

2. When converting MHA to GQA, mean pool each group’s key/value heads into 
a single key/value head, and train for α steps

3. GQA, like MQA, is for reducing the reloading of K, V during decoder 
inference, and thus is not applied to encoder self-attention layers



Group Query Attention Results
71



Uptraining Results for MQA and GQA 72



Multi-head Latent Attention (MLA) by DeepSeek

Source: DeepSeek v2 Technical Report



MHA                  vs.                  MLA

Source: DeepSeek v2 Technical Report
Additional References: https://epoch.ai/gradient-updates/how-has-deepseek-improved-the-transformer-architecture

https://planetbanatt.net/articles/mla.html
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/

https://epoch.ai/gradient-updates/how-has-deepseek-improved-the-transformer-architecture
https://planetbanatt.net/articles/mla.html
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/


Decoupled RoPE is needed for MLA

Source: Source: DeepSeek v2 Technical Report /

https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/


Multi-head Latent Attention (cont’d)

Source: DeepSeek v2 Technical Report



Hardware-Aware Attention WITHOUT Approximation
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GPU basics

1. A100 GPU, a standard GPU (was SOTA in 2020)
1. 40 – 80GB of HBM, 1.5-2.0TB/s

2. 20MB of SRAM, 19TB/s

3. SRAM are much smaller, but much faster

2. GPUs have many threads to execute an operation (called a kernel). 
Each kernel loads inputs from HBM to registers and SRAM, 
computes, then writes outputs to HBM

3. Operations are either (depending on op-to-mem-access ratio)
1. Compute-bound: e.g., matrix multiply, convolution

2. Memory-bound: e.g., activation, dropout, sum, softmax, batch norm
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General Tensor Core

GPU TFLOPs over Time

Speed difference with tensor 
cores is increasing
• 4x on V100, 
• 8x on A100, and 
• 16x on H100
With tensor cores versus 
without (across precisions).

Tensor cores multiply 16x16 
matrices (very roughly)

“All that matters is locality.” –
Paraphrasing, Mark Horowitz.Credit: Dan Fu

First Component of Modern GPU: 
Big Compute (eg., NVidia Tensor Cores)
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Memory Hierarchy of Modern GPU: 

(Simplified) Memory hierarchy
► Registers

► SRAM

► Memory

Small, Fast memory 
(Registers/SRAM)
Big, Slow memory (HBM)

Database people count IO as reads-and-writes 
from HBM (slow memory). 



Main Idea:

Tri Dao Dan Fu

https://crfm.stanford.edu/2023/01/13/flashattention.html

• Minimize IO (HBM to SRAM) – not FLOPs
• Aggressive fusion: when you pull in data use it.

Two classical ideas from database researchers.

Up to 72% Utilization—
15% faster BERT on MLPerf 1.1

FlashAttention (v1, v2):
Fast & Memory-Efficient Exact Attention w/ IO-Awareness

ML Perf Winners use it!

https://spectrum.ieee.org/mlperf-rankings-2022



How FlashAttention works ?
Prof. Jia bin Huang of UMD

https://www.youtube.com/watch?v=gBMO1JZav44

[From Online Softmax to FlashAttention] https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf
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Minimize IO to HBM in Flash Attention
Database people call “nested loop join”
r(Q) = 9 is the rows of Q, |Q| is number of tiles.

|Q| + r(Q)(|K| + |V|) + |O| = 18 + 9×(18+9) + 9 = 270 IO

• Minimize IO (HBM to SRAM) – not FLOPs
• Aggressive fusion: when you pull in data use it.



Same FLOPS but ~3x reduction in IO w/ block size 3. 
Flash Attention A100 uses 8x8 blocks.

Database Idea: Block Nested Loop Join. 
Read 3 blocks at once, so b(Q) = 9/3 = 3.

|Q| + b(Q)(|K| + |V|) + |O| = 18 + 3×(18+9) + 9 = 108 
IO

Minimize IO to HBM in Flash Attention

• Minimize IO (HBM to SRAM) – not FLOPs
• Aggressive fusion: when you pull in data use it.

Database people call “nested loop join”
r(Q) = 9 is the rows of Q, |Q| is number of tiles.

|Q| + r(Q)(|K| + |V|) + |O| = 18 + 9×(18+9) + 9 = 270 IO



Q

K1 K2

V2V1

Data in 
HBM

Q K1 V1

A1 O1

IO-Aware Attention

A = exp(QKT)
W = AV
Z = A.sum(-1)
O = W/Z

z1

Data in SRAM/Registers

Load(Q,K1,V1)
A1 = exp(Q1K1.T) // attention scores
z1 = A1.sum(-1) // normalization
O1 = A1V1/z1 // compute output.
Free(K1,V1,A1)

• Minimize IO (HBM to SRAM) – not FLOPs
• Aggressive fusion: when you pull in data use it.

Incorrect Normalization! Normalization should 
depend on the rest of K and V—we haven’t seen 
them!



Q

K1 K2

V2V1

Q K2 V2

A2 O1

IO-Aware Attention

A = exp(QKT)
W = AV
Z = A.sum(-1)
O = W/Z

z2

Load(K2,V2)
A2 = exp(Q2K2.T) // attention scores
z2 = z1+A2.sum(-1) // normalization
O2 = A2V2/z2 // compute output
O2 = O2 + z1/z2O1 // renormalize O1!
Free(K2,V2,A2,Z1,O1)

z1
O2

Data in 
HBM

Data in SRAM/Registers

NB: To Fix Normalization only need to keep last (Ot,Zt)

• Minimize IO (HBM to SRAM) – not FLOPs
• Aggressive fusion: when you pull in data use it.



Summary of Block-Aware Attention to 
FlashAttention

• Minimize HBM IO by blocked I/O. 

• To fuse, we aggregate like running sum to 
compute attention exactly.

• In database terms, softmax is an algebraic 
aggregation [Gray07].

• FlashAttention essentially block-nested loop 
join from classical databases. 

Load(K2,V2)
A2 = exp(Q2K2.T) // attention 
scores
z2 = z1+A2.sum(-1) // 
normalization
O2 = A2V2/z2 // compute the 
output
O2 = O2 + z1/z2O1 // renormalized!
Free(K2,V2,A2,Z1,O1)

Jim Gray, Turing Award 1998.

There is a whole canon of systems to re-explore for AI!



Open-Source, Quickly Adopted by the AI community !



9
1

FlashAttention: 6-10x speedup, 10-20x memory reduction

6-10x speedup — with no approximation
10-20x memory reduction



Mixture of Experts (MoE) architecture for Transformers



What is a Mixture of Expert (MoE) ?

● Replace the VERY BIG Feed Forward Network (FFN) with (multiple) not-as-BIG FFNs 
and a Selector Layer / Gating Function to Pick “TopK” FFNs.

● Can increase # of Experts without affecting FLOPS (during inference time) 
* For each token, only a subset (TopK) of Experts need to be Active during inference

● Performance better than one single Very BIG FFN of the same total parameter count !

[Fedus et al Switch Transformer … 2022]

FFN FFN



MoE Models

Open-source/ 
Open-weights Models

Proprietary Models



Why do MoEs become popular ?

● Same FLOP, larger parameter-count does better

[Fedus et al Switch Transformer … 2022]



Why do MoEs become popular ?
● Faster to train MoEs

[Fedus et al Switch Transformer … 2022]



Why do MoEs become popular ?

Traditional 
transformer

MoE
Sharding!

v Parallelizable to Many Devices (Machines) - Example from Gshard



Some Recent MoE Results: Mixtral / DBRX / Grok

v Most of the highest-performance Open Models are MoEs, and they are quite fast !



Some Recent MoE Results: Qwen & DeepSeekMoE(2024)

v Chinese LLM companies, e.g. Qwen and DeepSeek, have shown strength in their MoE work on 
the smaller-model end !



Recent Ablation Study on MoE Performance: DeepSeek

v Recent Ablation study on MoEs shows they are generally good !



Performance of DeepSeekMoE 16B (2024)

Source: DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models



Performance of DeepSeek-V2



Why haven’t MoEs been more popular before ?

v Recent Ablation study on MoEs shows they are generally good !



What MoEs generally look like ?



Key Design Variations of MoEs
● Most recent models place 

MoEs in every layer

● Some recent models 
apply Shared Experts



Key Design Variations of MoEs
● Routing Algorithm [ to select which Expert(s) ]

● Sizes of Experts

● Training Objectives



Training Objective

● Importance Loss: Encourage ALL experts to have Equal Importance
● Load Loss: Ensure Balanced Load across different Experts
● Auxiliary Loss: Mitigating Load Balance Losses
● Z-Loss: Improving Training Stability by Penalizing Large Logits
● MI-Loss: Mutual Information (MI) b/w experts and tasks to build task-expert alignment



Routing Algorithm (aka Gating) - Overview

● Many of the Routing Algorithms boil down to “Choose Top K”



Common Routing Variants in Detail



Other Routing Algorithms



Top-K Routing in Detail

t-th token in layer l

the centroid of the i-th expert in layer l



Recent variations in DeepSeek and Qwen



DeepSeek v2 Architecture

Source: DeepSeek v2 Technical Report



Ablation Study from the DeepSeekMoE paper



How to Train MoEs ?

Major Challenge: Need Sparsity for Training-time Efficiency BUT Sparse Gating 
Decisions are not Differentiable !

Solutions ?

1. Reinforcement Learning to optimize Gating Policies.
2. Stochastic Perturbations 
3. Heuristic “Balancing” Losses



RL for MoEs



Stochastic Approximations



Stochastic Approximations



Heuristics Balancing Losses



Example from DeepSeek



Training MoE – the System Architecture



Training MoE – the System Architecture



Additional Randomness from MoE models



Issues with MoEs – Training Stability



Issues with MoEs – Fine-Tuning



Additional Training Method for MoEs - Upcycling



Upcycling example - MiniCPM



Another Upcycling example – Qwen MoE

A remarkable Reduction of 75% in Training resource !



Upcycling example (?) Mixtral

Source: https://twitter.com/tianle_cai/status/1734188749117153684



MoE Summary

● MoE take advantage of Sparsity – Not all inputs need the Full model

● Discrete Routing is Hard, but Top-K Heuristics seem to work

● Lots of Empirical Evidence has shown MoEs work, and are cost-effective



Quantization



Different data types are represented by different numbers of bits:

● Char: 8 bits, 1 byte
● Int: 32 bits, 4 bytes

Common data types for training in machine learning:

● Floating point 32: 4 bytes
● BFloat16: 2 bytes

Data is organized by bytes and programs refer to data by address:

Preliminaries: How Are Numbers Represented in Computers?

…

Addr. 0
Addr. 1

We do not represent  an 
infinite set of values! 



What is Quantization?

Quantization is the process of mapping a continuous signal (or a signal where values come 
from a large set) to a discretized signal (or one where values come from a smaller set)

Quantization error is the absolute value of the true value (e.g. in the continuous signal) 
minus the quantized value 

https://en.wikipedia.org/wiki/Color_quantization

Quantized to 24-bit colors Quantized to 16-bit colors

https://en.wikipedia.org/wiki/Color_quantization


Quantization Motivation

Reduce Storage Required

Total Storage = Number of Parameters x Bit-width per Parameter

Reduce the FLOPs/Energy Required

For Addition: O(N) FLOPs for N-bit-width values

For Multiplication: O(N2) FLOPs for N-bit-width values



N-bit Integer
Unsigned Integer: [0, 2n - 1]

Signed Integer: We designate a bit for negative (1) or positive (0)

0 1 0 0 0 1 1 08-bits

2021

xxxxxxxx

222324252627 = 70

1 1 0 0 0 1 1 08-bits

2021

xxxxxxx

2223242526 = -70-1

“Signed 
magnitude 

representation”



N-bit Integer
Unsigned Integer: [0, 2n - 1]

Signed Integer: We designate a bit for negative (1) or positive (0)

0 1 0 0 0 1 1 08-bits

2021

xxxxxxxx

222324252627 = 70

1 0 1 1 1 0 1 08-bits

2021

xxxxxxx

2223242526 = -70-27

“Two’s 
complement 

representation”



Fixed-Point Numbers
We have a fixed number of bits allocated to the integer vs. fraction representation.

8-bits

1 1 0 0 0 1 1 08-bits

2-42-3

xxxxxxx

2-22-1202122 = -4.375-1

Sign Integer Fraction



Floating-Point Numbers

Value = (-1)sign x (1 + Fraction) x 2 Exponent - Bias

● Computing 2 Exponent rather than the linear Exponent, allows increasing the range 
of values we can represent!
○ Dynamic Range: difference between the maximum and minimum value we can represent

● Bias is 28-1-1. Subtracting the bias allows us to represent negative values in the 
exponent.

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)



Example of FP32

● Exponent: 26 + 25 + 24 + 23 = 120
● Bias: 28-1-1 = 127
● Fraction: 2-2 = 0.25

Value = (-1)sign x (1 + Fraction) x 2 Exponent - Bias

Value = (-1)0 x (1 + 0.25)          x 2120-127 = 0.0097656..

0 1 1 1 1 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)



Edge Cases of FP32

● Normal numbers: exponent is not all 0
○ This is what we looked at on the prior slides

● Subnormal numbers: exponent is all 0 
○ Equation is set to: value = (-1)sign x Fraction x 21-127

○ Value is 0 If exponent is all 0 and the fraction is 0
○ Smallest positive subnormal value we can represent =  2-23 x 21-127

○ Largest positive subnormal value we can represent = (1 - 2-23) x 21-127

0 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)

We cannot represent 
infinitely small values! 



Edge Cases of FP32

● Exponent is all 1 
○ Non-0 fraction is NaN (Not a Number)
○ 0 fraction is + infinity or - infinity depending on the sign bit

1 1 1 1 1 1 10 0 1 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)



Floating-Point Number (IEEE 754 Specification)

Credits: MIT 6.5940 (Prof. Song Han)

0 1 1 0 1 1 10 0 1 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00

Sign 8-bit Exponent 23-bit Fraction (“Mantissa”)



Other Floating-Point Representations
Recall that the storage size and computational cost for our model grows with the 
number of bits per value. Can we use fewer bits to train or run inference? 

FP16 → BF16: Goal is to increase the dynamic range. More stable training in practice.

Exponent bits Fraction bits Total

IEEE 754 FP32 8 23 32

IEEE 754 FP16 5 10 16

Google Brain Float 16 8 7 16



Two Classical Quantization Methods 

Original training: floating point weights and floating point computations

● K-means quantization: integer weights and floating point computations

● Linear quantization: integer weights and integer arithmetic



Examples of k-means clustering
● Clustering RGB vectors of pixels in images
● Compression of image file: N x 24 bits

○ Store RGB values of cluster centers: K x 24 bits
○ Store cluster index of each pixel: N x log K bits

4.2% 16.7%8.3%

Side Notes: 
O(kn2) 1-D k-means algorithm via Dynamic Programming: https://pmc.ncbi.nlm.nih.gov/articles/PMC5148156/
k-means is NP-hard: https://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf
k-means is NP-hard even for k=2: https://cseweb.ucsd.edu/~dasgupta/papers/kmeans.pdf

https://pmc.ncbi.nlm.nih.gov/articles/PMC5148156/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5148156/
https://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf
https://cseweb.ucsd.edu/~dasgupta/papers/kmeans.pdf


Method 1: K-Means Quantization
Approach during inference

1. Given our original full precision (e.g. FP32) 
weight matrix, we cluster the values

2. We store a index of the cluster number 
(integer) to the cluster centroid (floating point)

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)
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Centroids



Method 1: K-Means Quantization

3. We perform computations by reconstructing the weight matrix, using the map

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

2.00
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0.00

-1.00

3:

2:

1:

0:

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

Original FP32 Weights Cluster Index (2-bits)Centroids



Method 1: K-Means Quantization
Analysis. 

Let S be the size of the index. Let the original DxD weight matrix be in FP32.

Storage savings (reduced memory fetch): 

(32 x D2) - (log2(S) x D2 + S x 32)

At D = 4, the savings are 64B - 20B = 44B (3.2x compression)

As S << D, we see larger savings

Note that there are no computation savings (computation is still FP32)

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)



Method 1: K-Means Quantization
Approach during fine-tuning/training the shared weights (centroid vector). We have the 
same Sx1 dimensional  centroids vector as before.

1. We compute gradients with respect to the loss function for the centroids vector

dL / dCk = SUMi,j dL/dWij, for Wi, j in centroid Ck

1. We use the gradient vector for the centroids to update the centroid vector 

C(2) = C(1)- lr x (dL/dC(1))

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)



Method 1: K-Means Quantization
Summarizing the overall procedure:

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)



Method 1: K-Means Quantization with Huffman Encodings

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)

Looking at the quantized weights and centroid indices for the last layer of an AlexNet (vision) model:

Huffman codes (Van Leeuwen, 1976) use variable-length codewords to encode distributions. We 
could get away with fewer bits for more frequent values! Results in >20%+ memory savings above!



Summary of Deep Compression

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)



Deep Compression Results
Takeaways:

● For each method, as we 
increase the 
compression further, 
accuracy decreases

● Pruning and 
quantization work well 
together vs. one of 
them alone

Song Han et al., Deep Compression, 2016 ICLR (Best Conference Paper)



Recap: K-Means-based Weight Quantization



Motivation for Linear Quantization



Method 2: Linear Quantization

MIT 6.5940 Fall 2023 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877


Method 2: Linear Quantization

MIT 6.5940 Fall 2023 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877


Method 2: Linear Quantization
Knowns:

● We know rmin and rmax from our original 
weight matrix

● We know qminand qmax: if we are quantizing 
to bits (N), the range is (-2N-1 through 2N-1 - 1)

Given all those values, we can solve for S and Z
(two equations, two unknowns):

1. rmax= S(qmax - Z)
2. rmin = S(qmin - Z)



Linear Quantized Matrix Multiplication
Can we use integer computation instead of floating point with our linearly quantized 
weights?

To compute matmul Y = WX

where Y = SY (qY - ZY), W = SW (qW - ZW), X = SX (qX - ZX)

Rearranging the terms:



Linear Quantized Matrix Multiplication



Symmetric Linear Quantization



Symmetric Linear Quantization



Linear Quantized Fully-Connected Layer



Linear Quantized Fully-Connected Layer



Linear Quantized Fully-Connected Layer



Linear Quantized Fully-Connected Layer



Linear Quantized Convolution Layer



Linear Quantized Convolution Layer



INT8 Linear Quantization Results



Applications to Transformers

[2004.11886] Lite Transformer with Long-Short Range Attention, ICLR2020

https://arxiv.org/abs/2004.11886


References for Neural Networks Quantization

MIT 6.5940 Fall 2024 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877


More References for Neural Networks Quantization

MIT 6.5940 Fall 2024 TinyML and Efficient Deep Learning Computing
[1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

https://hanlab.mit.edu/courses/2023-fall-65940
https://arxiv.org/abs/1712.05877

